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from the California Institute of Technology in 1968. He married Ruth Tucker in
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his field of combinatorics. Ken’s research covered a wide spectrum of topics within
combinatorics.

Ken’s mathematical roots were in algebra and lattice theory, and his earliest
papers developed structural results for Noether lattices. One of the main topics in
his research was partial orders, about which he wrote more than two dozen papers.
This line of research started in the early 1970’s with contributions to the theory of
dimension for partial orders. A number of his papers treated applications of partial
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examining the optimal way to develop a consensus based on rankings that are
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Preface

This book is an introduction to combinatorial mathematics, also known as combina-
torics. The book focuses especially but not exclusively on the part of combinatorics
that mathematicians refer to as “counting.” The book consist almost entirely of
problems. Some of the problems are designed to lead you to think about a concept,
others are designed to help you figure out a concept and state a theorem about it,
while still others ask you to prove the theorem. Other problems give you a chance
to use a theorem you have proved. From time to time there is a discussion that
pulls together some of the things you have learned or introduces a new idea for you
to work with. Many of the problems are designed to build up your intuition for
how combinatorial mathematics works. There are problems that some people will
solve quickly, and there are problems that will take days of thought for everyone.
Probably the best way to use this book is to work on a problem until you feel you are
not making progress and then go on to the next one. Think about the problem you
couldn’t get as you do other things. The next chance you get, discuss the problem
you are stymied on with other members of the class. Often you will all feel you’ve
hit dead ends, but when you begin comparing notes and listening carefully to each
other, you will see more than one approach to the problem and be able to make
some progress. In fact, after comparing notes you may realize that there is more
than one way to interpret the problem. In this case your first step should be to
think together about what the problem is actually asking you to do. You may have
learned in school that for every problem you are given, there is a method that has
already been taught to you, and you are supposed to figure out which method
applies and apply it. That is not the case here. Based on some simplified examples,
you will discover the method for yourself. Later on, you may recognize a pattern
that suggests you should try to use this method again.

The point of learning from this book is that you are learning how to discover
ideas and methods for yourself, not that you are learning to apply methods that
someone else has told you about. The problems in this book are designed to lead
you to discover for yourself and prove for yourself the main ideas of combinatorial
mathematics. There is considerable evidence that this leads to deeper learning and
more understanding.

You will see that some of the problems are marked with bullets. Those are the
problems that I feel are essential to having an understanding of what comes later,
whether or not it is marked by a bullet. The problems with bullets are the problems
in which the main ideas of the book are developed. Your instructor may leave out
some of these problems because he or she plans not to cover future problems that
rely on them. Many problems, in fact entire sections, are not marked in this way,
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because they use an important idea rather than developing one. Some other special
symbols are described in what follows; a summary appears in the table below.

• essential
◦ motivational material
+ summary
⇒ especially interesting
∗ difficult
· essential for this section or the next

Some problems are marked with open circles. This indicates that they are
designed to provide motivation for, or an introduction to, the important concepts,
motivation with which some students may already be familiar. You will also see
that some problems are marked with arrows. These point to problems that I think
are particularly interesting. Some of them are also difficult, but not all are. A few
problems that summarize ideas that have come before but aren’t really essential are
marked with a plus, and problems that are essential if you want to cover the section
they are in or, perhaps, the next section, are marked with a dot (a small bullet).
If a problem is relevant to a much later section in an essential way, I’ve marked it
with a dot and a parenthetical note that explains where it will be essential. Finally,
problems that seem unusually hard to me are marked with an asterisk. Some
I’ve marked as hard only because I think they are difficult in light of what has
come before, not because they are intrinsically difficult. In particular, some of the
problems marked as hard will not seem so hard if you come back to them after you
have finished more of the problems.

If you are taking a course, your instructor will choose problems for you to work
on based on the prerequisites for and goals of the course. If you are reading the
book on your own, I recommend that you try all the problems in a section you
want to cover. Try to do the problems with bullets, but by all means don’t restrict
yourself to them. Often a bulleted problem makes more sense if you have done
some of the easier motivational problems that come before it. If, after you’ve tried
it, you want to skip over a problem without a bullet or circle, you should not miss
out on much by not doing that problem. Also, if you don’t find the problems in
a section with no bullets interesting, you can skip them, understanding that you
may be skipping an entire branch of combinatorial mathematics! And no matter
what, read the textual material that comes before, between, and immediately after
problems you are working on!

One of the downsides of how we learn math in high school is that many of us
come to believe that if we can’t solve a problem in ten or twenty minutes, then we
can’t solve it at all. There will be problems in this book that take hours of hard
thought. Many of these problems were first conceived and solved by professional
mathematicians, and they spent days or weeks on them. How can you be expected
to solve them at all then? You have a context in which to work, and even though
some of the problems are so open ended that you go into them without any idea
of the answer, the context and the leading examples that preceded them give you
a structure to work with. That doesn’t mean you’ll get them right away, but you
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will find a real sense of satisfaction when you see what you can figure out with
concentrated thought. Besides, you can get hints!

Some of the questions will appear to be trick questions, especially when you
get the answer. They are not intended as trick questions at all. Instead they are
designed so that they don’t tell you the answer in advance. For example the answer
to a question that begins “How many...” might be “none.” Or there might be
just one example (or even no examples) for a problem that asks you to find all
examples of something. So when you read a question, unless it directly tells you
what the answer is and asks you to show it is true, don’t expect the wording of
the problem to suggest the answer. The book isn’t designed this way to be cruel.
Rather, there is evidence that the more open-ended a question is, the more deeply
you learn from working on it. If you do go on to do mathematics later in life, the
problems that come to you from the real world or from exploring a mathematical
topic are going to be open-ended problems because nobody will have done them
before. Thus working on open-ended problems now should help to prepare you to
do mathematics later on.

You should try to write up answers to all the problems that you work on. If
you claim something is true, you should explain why it is true; that is you should
prove it. In some cases an idea is introduced before you have the tools to prove
it, or the proof of something will add nothing to your understanding. In such
problems there is a remark telling you not to bother with a proof. When you write
up a problem, remember that the instructor has to be able to “get” your ideas and
understand exactly what you are saying. Your instructor is going to choose some
of your solutions to read carefully and give you detailed feedback on. When you
get this feedback, you should think it over carefully and then write the solution
again! You may be asked not to have someone else read your solutions to some
of these problems until your instructor has. This is so that the instructor can offer
help which is aimed at your needs. On other problems it is a good idea to seek
feedback from other students. One of the best ways of learning to write clearly is to
have someone point out to you where it is hard to figure out what you mean. The
crucial thing is to make it clear to your reader that you really want to know where
you may have left something out, made an unclear statement, or failed to support
a statement with a proof. It is often very helpful to choose people who have not yet
become an expert with the problems, as long as they realize it will help you most
for them to tell you about places in your solutions they do not understand, even if
they think it is their problem and not yours!

As you work on a problem, think about why you are doing what you are doing.
Is it helping you? If your current approach doesn’t feel right, try to see why. Is
this a problem you can decompose into simpler problems? Can you see a way to
make up a simple example, even a silly one, of what the problem is asking you to
do? If a problem is asking you to do something for every value of an integer n,
then what happens with simple values of n like 0, 1, and 2? Don’t worry about
making mistakes; it is often finding mistakes that leads mathematicians to their
best insights. Above all, don’t worry if you can’t do a problem. Some problems
are given as soon as there is one technique you’ve learned that might help do
that problem. Later on there may be other techniques that you can bring back to
that problem to try again. The notes have been designed this way on purpose. If
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you happen to get a hard problem with the bare minimum of tools, you will have
accomplished much. As you go along, you will see your ideas appearing again
later in other problems. On the other hand, if you don’t get the problem the first
time through, it will be nagging at you as you work on other things, and when you
see the idea for an old problem in new work, you will know you are learning.

There are quite a few concepts that are developed in this book. Since most of the
intellectual content is in the problems, it is natural that definitions of concepts will
often be within problems. When you come across an unfamiliar term in a problem,
it is likely it was defined earlier. Look it up in the index, and with luck (hopefully
no luck will really be needed!) you will be able to find the definition.

Above all, this book is dedicated to the principle that doing mathematics is fun.
As long as you know that some of the problems are going to require more than one
attempt before you hit on the main idea, you can relax and enjoy your successes,
knowing that as you work more and more problems and share more and more
ideas, problems that seemed intractable at first become a source of satisfaction later
on.

The development of this book is supported by the National Science Founda-
tion. An essential part of this support is an advisory board of faculty members
from a wide variety of institutions who have made valuable contributions. They
are Karen Collins, Wesleyan University, Marc Lipman, Indiana University/Purdue
University, Fort Wayne, Elizabeth MacMahon, Lafayette College, Fred McMorris,
Illinois Institute of Technology, Mark Miller, Marietta College, Rosa Orellana, Dart-
mouth College, Vic Reiner, University of Minnesota, and Lou Shapiro, Howard
University. The overall design and most of the problems in the appendix on ex-
ponential generating functions are due to Professors Reiner and Shapiro. Any
errors or confusing writing in that appendix are due to me! I believe the board has
managed both to make the book more accessible and more interesting.



Preface to PreTeXt edition

At the time of his death in 2005, Ken Bogart was working on this NSF-supported
effort to create a combinatorics textbook that developed the key ideas of undergrad-
uate combinatorics through “guided discovery”, or what many today typically call
inquiry-based learning. The project was under contract with Springer-Verlag for a
commercially-published print edition, but Ken’s untimely passing left the project
in an unfinished state. Bogart’s family asked the Department of Mathematics at
Dartmouth College, where he had spent his entire career after earning his Ph.D.
from Caltech in 1968, to distribute the text freely under the GNU Free Documen-
tation License. This open-source release came with some notes, however. Those
notes, listed on the book’s Dartmouth page, were:

1. The contents of the archive are released under the terms of the gnu
Free Documentation License (FDL), a copy of which is contained
in the archive.

2. The contents of the archive are released in “as is” condition, which
in particular means that the state of the source files is not in agree-
ment with the pdf versions of the text. A README offers some
guidance.

3. Many people have already used the textbook in courses at various
universities throughout the country. It is the hope of the Bogart
family that this project continues to grow to completion with the
efforts of those who download this archive.

The caveat in the second note seemed to be the largest toward fulfilling the goal of
the third, as the “official” version of the pdf had a different chapter structure than
the LATEX source files provided. This was mostly the result of splitting a chapter into
two and rearranging a few topics, but there were also places where problems were
split or merged between the source version and the pdf version. The pdf version
also came with copious hints that readers could access online, but no LATEX source
existed for these hints.

This PreTeXt edition of Combinatorics through Guided Discovery attempts to help
fulfill the Bogart family’s wish to see the project grow and reach a complete state.
One of us (mtk) had used the official pdf to teach a combinatorics course in Winter
2015 and mentioned this fact at a workshop on open source textbooks and PreTeXt
(then MathBook xml) organized by the American Institute of Mathematics in the
spring of 2016. This caught the attention of kem, since Combinatorics through Guided
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Discovery had been placed on the aim list of approved open source textbooks, but
there had been no success in finding someone to take on the task of updating the
source to match the pdf. The three of us came together again in May 2017 at the
University of Puget Sound for another workshop on open educational resources
and agreed to cooperate to complete the conversion of this book to PreTeXt. The
fact that ol wanted to use parts of the book for his Fall 2017 class gave us the
motivation required to complete the project over the summer.

For this edition, our goal has been to reproduce the text of Bogart’s final pdf
as faithfullly as possible. Based on our own classroom uses, we have notes about
problems that could use revising, but we agreed the right first step would be to
have source files that matched what Bogart left. We have, however, corrected
obvious errors along the way, which included moving the Supplementary Chapter
Problems in Chapter 3 from the level of a subsection to the level of a section for
consistency with the other chapters. Footnotes may be numbered differently, as in
this edition, a footnote in the body of a problem is rendered with the problem and
numbered in a different sequence. The hints that previously were accessed by links
from the pdf to a Dartmouth webpage have also been included in the backmatter
of the print edition as Appendix D. Links to open hints in place are available in
the HTML version, while in the print and PDF edition, the existence of a hint is
indicated by “(h)” at the end of the problem (or part of a problem). David Farmer
provided invaluable assistance by automating the initial conversion of LATEX files
to PreTeXt and extracting the text of the hints from the pdf files. We then worked
in parallel to compare the official pdf to what we were able to produce from the
source until they matched. Since this process could not be truly automated, we
suspect there will be some places where Bogart’s pdf and this edition do not match.
We welcome reports of these through issues and pull requests on the Github
site for the book https://github.com/OpenDiscreteMath/ibl-combinatorics/. Going
forward, we would like to see community-driven updates to further develop the
text, either by improving existing problems, adding new problems on existing
topics, or adding new topics suitable for a course based on this text. One area of
development may be to include SageMath to the text, since PreTeXt includles a
number of nice features for doing this and some of the material may benefit from
the addition of a computer algebra system to allow more interesting calculations
than would be feasible by hand.

An html version of this text is available at http://bogart.openmathbooks.org/. A
low-cost print edition is available for purchase online. The cost of the print edition
is kept as low as possible, and any royalties received support costs associated with
hosting and distributing the text. A pdf copy of print edition is also posted on the
book’s site. The pdf may provide a better experience for searching than the HTML
version.

Mitchel T. Keller, Oscar Levin, and Kent E. Morrison
Lexington, Virginia; Greeley, Colorado; and San Jose, California
December 2017

https://github.com/OpenDiscreteMath/ibl-combinatorics/
http://bogart.openmathbooks.org/
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Chapter 1

What is Combinatorics?

Combinatorial mathematics arises from studying how we can combine objects into
arrangements. For example, we might be combining sports teams into a tourna-
ment, samples of tires into plans to mount them on cars for testing, students into
classes to compare approaches to teaching a subject, or members of a tennis club
into pairs to play tennis. There are many questions one can ask about such ar-
rangements of objects. Here we will focus on questions about how many ways we
may combine the objects into arrangements of the desired type. These are called
counting problems. Sometimes, though, combinatorial mathematicians ask if an
arrangement is possible (if we have ten baseball teams, and each team has to play
each other team once, can we schedule all the games if we only have the fields avail-
able at enough times for forty games?). Sometimes they ask if all the arrangements
we might be able to make have a certain desirable property (Do all ways of testing 5
brands of tires on 5 different cars [with certain additional properties] compare each
brand with each other brand on at least one common car?). Problems of these sorts
come up throughout physics, biology, computer science, statistics, and many other
subjects. However, to demonstrate all these relationships, we would have to take
detours into all these subjects. While we will give some important applications, we
will usually phrase our discussions around everyday experience and mathematical
experience so that the student does not have to learn a new context before learning
mathematics in context!

1.1 About These Notes
These notes are based on the philosophy that you learn the most about a subject
when you are figuring it out directly for yourself, and learn the least when you are
trying to figure out what someone else is saying about it. On the other hand, there
is a subject called combinatorial mathematics, and that is what we are going to be
studying, so we will have to tell you some basic facts. What we are going to try to
do is to give you a chance to discover many of the interesting examples that usually
appear as textbook examples and discover the principles that appear as textbook
theorems. Your main activity will be solving problems designed to lead you to
discover the basic principles of combinatorial mathematics. Some of the problems
lead you through a new idea, some give you a chance to describe what you have

1
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learned in a sequence of problems, and some are quite challenging. When you find
a problem challenging, don’t give up on it, but don’t let it stop you from going on
with other problems. Frequently you will find an idea in a later problem that you
can take back to the one you skipped over or only partly finished in order to finish
it off. With that in mind, let’s get started. In the problems that follow, you will
see some problems marked on the left with various symbols. The preface gives a
full explanation of these symbols and discusses in greater detail why the book is
organized as it is! Table 1.1.1, which is repeated from the preface, summarizes the
meaning of the symbols.

• essential
◦ motivational material
+ summary
⇒ especially interesting
∗ difficult
· essential for this section or the next

Table 1.1.1: The meaning of the symbols to the left of problem numbers.

1.2 Basic Counting Principles

Problem 1.◦ Five schools are going to send their baseball teams to a tourna-
ment, in which each team must play each other team exactly once. How
many games are required? (h)

Problem 2.• Now some number n of schools are going to send their baseball
teams to a tournament, and each team must play each other team exactly
once. Let us think of the teams as numbered 1 through n.

(a) How many games does team 1 have to play in?

(b) How many games, other than the one with team 1, does team two
have to play in?

(c) How many games, other than those with the first i − 1 teams, does
team i have to play in?

(d) In terms of your answers to the previous parts of this problem, what
is the total number of games that must be played?

Problem 3.• One of the schools sending its team to the tournament has to
send its players from some distance, and so it is making sandwiches for
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team members to eat along the way. There are three choices for the kind of
bread and five choices for the kind of filling. How many different kinds of
sandwiches are available? (h)

Problem 4.+ An ordered pair (a , b) consists of two things we call a and b. We
say a is the first member of the pair and b is the second member of the pair.
If M is an m element set and N is an n-element set, how many ordered pairs
are there whose first member is in M and whose second member is in N?
Does this problem have anything to do with any of the previous problems?

Problem 5.◦ Since a sandwich by itself is pretty boring, students from the
school in Problem 3 are offered a choice of a drink (from among five different
kinds), a sandwich, and a fruit (from among four different kinds). In how
many ways may a student make a choice of the three items now?

Problem 6.• The coach of the team in Problem 3 knows of an ice cream parlor
along the way where she plans to stop to buy each team member a triple
decker cone. There are 12 different flavors of ice cream, and triple decker
cones are made in homemade waffle cones. Having chocolate ice cream as
the bottom scoop is different from having chocolate ice cream as the top
scoop. How many possible ice cream cones are going to be available to the
team members? How many cones with three different kinds of ice cream
will be available? (h)

Problem 7.• The idea of a function is ubiquitous in mathematics. A function
f from a set S to a set T is a relationship between the two sets that associates
exactly one member f (x) of T with each element x in S. We will come
back to the ideas of functions and relationships in more detail and from
different points of view from time to time. However, the quick review above
should probably let you answer these questions. If you have difficulty with
them, it would be a good idea to go now to Appendix A and work through
Section A.1 which covers this definition in more detail. You might also want
to study Section A.1.3 to learn to visualize the properties of functions. We
will take up the topic of this section later in this chapter as well, but in less
detail than is in the appendix.

(a) Using f , g, . . . , to stand for the various functions, write down all
the different functions you can from the set {1, 2} to the set {a , b}.
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For example, you might start with f (1) = a, f (2) = b. How many
functions are there from the set {1, 2} to the set {a , b}? (h)

(b) How many functions are there from the three element set {1, 2, 3} to
the two element set {a , b}? (h)

(c) How many functions are there from the two element set {a , b} to the
three element set {1, 2, 3}? (h)

(d) How many functions are there from a three element set to a 12 element
set?

(e) The function f is called one-to-one or an injection if whenever x is
different from y, f (x) is different from f (y). How many one-to-one
functions are there from a three element set to a 12 element set?

(f) Explain the relationship between this problem and Problem 6.

Problem 8.• A group of hungry team members in Problem 6 notices it would
be cheaper to buy three pints of ice cream for them to split than to buy a
triple decker cone for each of them, and that way they would get more ice
cream. They ask their coach if they can buy three pints of ice cream.

(a) In how many ways can they choose three pints of different flavors out
of the 12 flavors? (h)

(b) In how many ways may they choose three pints if the flavors don’t
have to be different? (h)

Problem 9.• Two sets are said to be disjoint if they have no elements in
common. For example, {1, 3, 12} and {6, 4, 8, 2} are disjoint, but {1, 3, 12}
and {3, 5, 7} are not. Three or more sets are said to be mutually disjoint if
no two of them have any elements in common. What can you say about the
size of the union of a finite number of finite (mutually) disjoint sets? Does
this have anything to do with any of the previous problems?

Problem 10.• Disjoint subsets are defined in Problem 9. What can you say
about the size of the union of m (mutually) disjoint sets, each of size n?
Does this have anything to do with any of the previous problems?
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1.2.1 The sum and product principles
These problems contain among them the kernels of many of the fundamental
ideas of combinatorics. For example, with luck, you just stated the sum principle
(illustrated in Figure 1.2.1), and product principle (illustrated in Figure 1.2.2) in
Problems 9 and Problem 10. These two counting principles are the basis on which
we will develop many other counting principles.

Figure 1.2.1: The union of these two disjoint sets has size 17.

Figure 1.2.2: The union of four disjoint sets of size five.

You may have noticed some standard mathematical words and phrases such
as set, ordered pair, function and so on creeping into the problems. One of our
goals in these notes is to show how most counting problems can be recognized as
counting all or some of the elements of a set of standard mathematical objects. For
example Problem 4 is meant to suggest that the question we asked in Problem 3
was really a problem of counting all the ordered pairs consisting of a bread choice
and a filling choice. We use A×B to stand for the set of all ordered pairs whose first
element is in A and whose second element is in B and we call A × B the Cartesian
product of A and B, so you can think of Problem 4 as asking you for the size of the
Cartesian product of M and N , that is, asking you to count the number of elements
of this Cartesian product.

When a set S is a union of disjoint sets B1 , B2 , . . . , Bm we say that the sets
B1 , B2 , . . . , Bm are a partition of the set S. Thus a partition of S is a (special kind
of) set of sets. So that we don’t find ourselves getting confused between the set S
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and the sets Bi into which we have divided it, we often call the sets B1 , B2 , . . . , Bm
the blocks of the partition. In this language, the sum principle says that

if we have a partition of a set S, then the size of S is the sum of the sizes
of the blocks of the partition.

The product principle says that

if we have a partition of a set S into m blocks, each of size n, then S has
size mn.

You’ll notice that in our formal statement of the sum and product pinciple we
talked about a partition of a finite set. We could modify our language a bit to cover
infinite sizes, but whenever we talk about sizes of sets in what follows, we will be
working with finite sets. So as to avoid possible complications in the future, let
us agree that when we refer to the size of a set, we are implicitly assuming the set
is finite. There is another version of the product principle that applies directly in
problems like Problem 5 and Problem 6, where we were not just taking a union of
m disjoint sets of size n, but rather m disjoint sets of size n, each of which was a
union of m′ disjoint sets of size n′. This is an inconvenient way to have to think
about a counting problem, so we may rephrase the product principle in terms of a
sequence of decisions:

Problem 11.• If we make a sequence of m choices for which

• there are k1 possible first choices, and

• for each way of making the first i−1 choices, there are ki ways to make
the ith choice,

then in how many ways may we make our sequence of choices? (You need
not prove your answer correct at this time.)

The counting principle you gave in Problem 11 is called the general product
principle. We will outline a proof of the general product pinciple from the original
product principle in Problem 80. Until then, let us simply accept it as another
counting principle. For now, notice how much easier it makes it to explain why we
multiplied the things we did in Problem 5 and Problem 6.

Problem 12.⇒ A tennis club has 2n members. We want to pair up the mem-
bers by twos for singles matches.

(a) In how many ways may we pair up all the members of the club? (Hint:
consider the cases of 2, 4, and 6 members.) (h)

(b) Suppose that in addition to specifying who plays whom, for each
pairing we say who serves first. Now in how many ways may we
specify our pairs?
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Problem 13.+ Let us now return to Problem 7 and justify—or perhaps fin-
ish—our answer to the question about the number of functions from a
three-element set to a 12-element set.

(a) How can you justify your answer in Problem 7 to the question “How
many functions are there from a three element set (say [3] = {1, 2, 3})
to a twelve element set (say [12])?”

(b) Based on the examples you’ve seen so far, make a conjecture about
how many functions there are from the set

[m] = {1, 2, 3, . . . ,m}

to [n] = {1, 2, 3, . . . , n} and prove it.

(c) A common notation for the set of all functions from a set M to a set N
is NM . Why is this a good notation?

Problem 14.+ Now suppose we are thinking about a set S of functions f from
[m] to some set X. (For example, in Problem 6 we were thinking of the set of
functions from the three possible places for scoops in an ice-cream cone to
12 flavors of ice cream.) Suppose there are k1 choices for f (1). (In Problem 6,
k1 was 12, because there were 12 ways to choose the first scoop.) Suppose
that for each choice of f (1) there are k2 choices for f (2). (For example, in
Problem 6 k2 was 12 if the second flavor could be the same as the first, but
k2 was 11 if the flavors had to be different.) In general, suppose that for each
choice of f (1), f (2), . . . f (i − 1), there are ki choices for f (i). (For example,
in Problem 6, if the flavors have to be different, then for each choice of f (1)
and f (2), there are 10 choices for f (3).)
What we have assumed so far about the functions in S may be summarized
as

• There are k1 choices for f (1).

• For each choice of f (1), f (2), . . . , f (i − 1), there are ki choices for f (i).

How many functions are in the set S? Is there any practical difference
between the result of this problem and the general product principle?

The point of Problem 14 is that the general product principle can be stated
informally, as we did originally, or as a statement about counting sets of standard
concrete mathematical objects, namely functions.

Problem 15.⇒ A roller coaster car has n rows of seats, each of which has room
for two people. If n men and n women get into the car with a man and a
woman in each row, in how many ways may they choose their seats? (h)
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Problem 16.+ How does the general product principle apply to Problem 6?

Problem 17.• In how many ways can we pass out k distinct pieces of fruit to
n children (with no restriction on how many pieces of fruit a child may get)?

Problem 18.• How many subsets does a set S with n elements have? (h)

Problem 19.◦ Assuming k ≤ n, in how many ways can we pass out k distinct
pieces of fruit to n children if each child may get at most one? What is the
number if k > n? Assume for both questions that we pass out all the fruit. (h)

Problem 20.• Another name for a list, in a specific order, of k distinct things
chosen from a set S is a k-element permutation of S. We can also think of
a k-element permutation of S as a one-to-one function (or, in other words,
injection) from [k] = {1, 2, . . . , k} to S. How many k-element permutations
does an n-element set have? (For this problem it is natural to assume k ≤ n.
However the question makes sense even if k > n. What is the number of
k-element permutations of an n-element set if k > n? (h)

There are a number of different notations for the number of k-element permu-
tations of an n-element set. The one we shall use was introduced by Don Knuth;
namely nk , read “n to the k falling” or “n to the k down”. In Problem 20 you may
have shown that

nk = n(n − 1) · · · (n − k + 1) =
k∏

i=1

(n − i + 1). (1.1)

It is standard to call nk the k-th falling factorial power of n, which explains
why we use exponential notation. Of course we call it a factorial power since nn =
n(n − 1) · · · 1 which we call n-factorial and denote by n!. If you are unfamiliar with
the Π notation, or product notation we introduced for products in Equation (1.1),
it works just like the Σ notation works for summations.

Problem 21.• Express nk as a quotient of factorials.

Problem 22.⇒ How should we define n0?
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1.2.2 Functions and directed graphs
As another example how standard mathematical language relates to counting prob-
lems, Problem 7 explicitly asked you to relate the idea of counting functions to the
question of Problem 6. You have probably learned in algebra or calculus how to
draw graphs in the Cartesian plane of functions from a set of numbers to a set of
numbers. You may recall how we can determine whether a graph is a graph of a
function by examining whether each vertical straight line crosses the graph at most
one time. You might also recall how we can determine whether such a function is
one-to-one by examining whether each horizontal straight line crosses the graph at
most one time. The functions we deal with will often involve objects which are not
numbers, and will often be functions from one finite set to another. Thus graphs
in the cartesian plane will often not be available to us for visualizing functions.

However, there is another kind of graph called a directed graph or digraph
that is especially useful when dealing with functions between finite sets. We
take up this topic in more detail in Appendix A, particularly Subsection A.1.2 and
Subsection A.1.3. In Figure 1.2.3 we show several examples of digraphs of functions.

(e) The function from {0, 1, 2, 3, 4, 5} to 

{0, 1, 2, 3, 4, 5} given by f(x) = x + 2 mod 6

Figure 1.2.3: What is a digraph of a function?
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If we have a function f from a set S to a set T, we draw a line of dots or circles,
called vertices to represent the elements of S and another (usually parallel) line of
circles or dots to represent the elements of T. We then draw an arrow from the
circle for x to the circle for y if f (x) = y. Sometimes, as in part (e) of the figure, if we
have a function from a set S to itself, we draw only one set of vertices representing
the elements of S, in which case we can have arrows both entering and leaving a
given vertex. As you see, the digraph can be more enlightening in this case if we
experiment with the function to find a nice placement of the vertices rather than
putting them in a row.

Notice that there is a simple test for whether a digraph whose vertices represent
the elements of the sets S and T is the digraph of a function from S to T. There
must be one and only one arrow leaving each vertex of the digraph representing an
element of S. The fact that there is one arrow means that f (x) is defined for each x
in S. The fact that there is only one arrow means that each x in S is related to exactly
one element of T. (Note that these remarks hold as well if we have a function from
S to S and draw only one set of vertices representing the elements of S.) For further
discussion of functions and digraphs see Sections A.1.1 and Subsection A.1.2 of
Appendix A.

Problem 23.◦ Draw the digraph of the function from the set {Alice, Bob,
Dawn, Bill} to the set {A, B, C, D, E} given by

f (X) = the first letter of the name X.

Problem 24.• A function f : S → T is called an onto function or surjection
if each element of T is f (x) for some x ∈ S. Choose a set S and a set T so
that you can draw the digraph of a function from S to T that is one-to-one
but not onto, and draw the digraph of such a function.

Problem 25.◦ Choose a set S and a set T so that you can draw the digraph of
a function from S to T that is onto but not one-to-one, and draw the digraph
of such a function.

Problem 26.• Digraphs of functions help us visualize the ideas of one-to-one
functions and onto functions.

(a) What does the digraph of a one-to-one function (injection) from a finite
set X to a finite set Y look like? (Look for a test somewhat similar to the
one we described for when a digraph is the digraph of a function.) (h)

(b) What does the digraph of an onto function look like?
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(c) What does the digraph of a one-to-one and onto function from a finite
set S to a set T look like?

Problem 27.• The word permutation is actually used in two different ways in
mathematics. A permutation of a set S is one-to-one from S onto S. How
many permutations does an n-element set have?

Notice that there is a great deal of consistency between the use of the word
permutation in Problem 27 and the use in Problem 20. If we have some way
a1 , a2 , . . . , an of listing our set, then any other list b1 , b2 , . . . , bn gives us the permu-
tation of S whose rule is f (ai) = bi , and any permutation of S, say the one given by
g(ai) = ci gives us a list c1 , c2 , . . . , cn of S. Thus there is really very little difference
between the idea of a permutation of S and an n-element permutation of S when
n is the size of S.

1.2.3 The bĳection principle
Another name for a one-to-one and onto function is bĳection. The digraphs marked
(a), (b), and (e) in Figure 1.2.3 are digraphs of bĳections. The description in Prob-
lem 26.c of the digraph of a bĳection from X to Y illustrates one of the fundamental
principles of combinatorial mathematics, the bĳection principle:

Two sets have the same size if and only if there is a bĳection between
them.

It is surprising how this innocent sounding principle guides us into finding insight
into some otherwise very complicated proofs.

1.2.4 Counting subsets of a set

Problem 28. The binary representation of a number m is a list, or string,
a1a2 . . . ak of zeros and ones such that m = a12k−1 + a22k−2 + · · · + ak20.
Describe a bĳection between the binary representations of the integers be-
tween 0 and 2n − 1 and the subsets of an n-element set. What does this tell
you about the number of subsets of an n-element set? (h)

Notice that the first question in Problem 8 asked you for the number of ways
to choose a three element subset from a 12 element subset. You may have seen a
notation like (n

k ), C(n , k), or nCk which stands for the number of ways to choose a k-
element subset from an n-element set. The number (n

k ) is read as “n choose k” and
is called a binomial coefficient for reasons we will see later on. Another frequently
used way to read the binomial coefficient notation is “the number of combinations
of n things taken k at a time." You are going to be asked to construct two bĳections
that relate to these numbers and figure out what famous formula they prove. We
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are going to think about subsets of the n-element set [n] = {1, 2, 3, . . . , n}. As an
example, the set of two-element subsets of [4] is

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

This example tells us that (42 ) = 6.

Problem 29.• Let C be the set of k-element subsets of [n] that contain the
number n, and let D be the set of k-element subsets of [n] that don’t contain
n.

(a) Let C′ be the set of (k−1)-element subsets of [n−1]. Describe a bĳection
from C to C′. (A verbal description is fine.)

(b) Let D′ be the set of k-element subsets of [n − 1] = {1, 2, . . . n − 1}.
Describe a bĳection from D to D′. (A verbal description is fine.)

(c) Based on the two previous parts, express the sizes of C and D in terms
of binomial coefficients involving n − 1 instead of n.

(d) Apply the sum principle to C and D and obtain a formula that ex-
presses (n

k ) in terms of two binomial coefficients involving n − 1. You
have just derived the Pascal Equation that is the basis for the famous
Pascal’s Triangle.

1.2.5 Pascal’s Triangle
The Pascal Equation that you derived in Problem 29 gives us the triangle in Fig-
ure 1.2.4. This figure has the number of k-element subsets of an n-element set as
the kth number over in the nth row (we call the top row the zeroth row and the
beginning entry of a row the zeroth number over). You’ll see that your formula
doesn’t say anything about (n

k ) if k = 0 or k = n, but otherwise it says that each
entry is the sum of the two that are above it and just to the left or right.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 1.2.4: Pascal’s Triangle
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Problem 30. Just for practice, what is the next row of Pascal’s triangle?

Problem 31.⇒ Without writing out the rows completely, write out enough of
Pascal’s triangle to get a numerical answer for the first question in Prob-
lem 8. (h)

It is less common to see Pascal’s triangle as a right triangle, but it actually
makes your formula easier to interpret. In Pascal’s Right Triangle, the element in
row n and column k (with the convention that the first row is row zero and the
first column is column zero) is (n

k ). In this case your formula says each entry in a
row is the sum of the one above and the one above and to the left, except for the
leftmost and rightmost entries of a row, for which that doesn’t make sense. Since
the leftmost entry is (n

0 ) and the rightmost entry is (n
n ), these entries are both one

(to see why, ask yourself how many 0-element subsets and how many n-element
subsets an n-element set has), and your formula then tells how to fill in the rest of
the table.

k = 0 1 2 3 4 5 6 7
n = 0 1

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

Table 1.2.5: Pascal’s Right Triangle

Seeing this right triangle leads us to ask whether there is some natural way
to extend the right triangle to a rectangle. If we did have a rectangular table of
binomial coefficients, counting the first row as row zero (i.e., n = 0) and the first
column as column zero (i.e., k = 0), the entries we don’t yet have are values of (n

k )
for k > n. But how many k-element subsets does an n-element set have if k > n?
The answer, of course, is zero, so all the other entries we would fill in would be
zero, giving us the rectangular array in Figure 1.2.6. It is straightforward to check
that Pascal’s equation now works for all the entries in the rectangle that have an
entry above them and an entry above and to the left.
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k = 0 1 2 3 4 5 6 7
n = 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

Table 1.2.6: Pascal’s Rectangle

Problem 32.⇒ Because our definition told us that (n
k ) is 0 when k > n, we got

a rectangular table of numbers that satisfies the Pascal Equation.

(a) Is there any other way to define (n
k ) when k > n in order to get a

rectangular table that agrees with Pascal’s Right Triangle for k ≤ n
and satisfies the Pascal Equation? (h)

(b) Suppose we want to extend Pascal’s Rectangle to the left and define
( n
−k ) for n ≥ 0 and k > 0 so that −k < 0. What should we put into row

n and column −k of Pascal’s Rectangle in order for the Pascal Equation
to hold true? (h)

(c) What should we put into row −n and column k or column −k in order
for the Pascal Equation to continue to hold? Do we have any freedom
of choice? (h)

Problem 33. There is yet another bĳection that lets us prove that a set of
size n has 2n subsets. Namely, for each subset S of [n] = {1, 2, . . . , n}, define
a function (traditionally denoted by χS) as follows.a

χS(i) =

{
1 if i ∈ S
0 if i ! S

The function χS is called the characteristic function of S. Notice that the
characteristic function is a function from [n] to {0, 1}.

(a) For practice, consider the function χ{1,3} for the subset {1, 3} of the set
{1, 2, 3, 4}. What are

(i) χ{1,3}(1)?
(ii) χ{1,3}(2)?

(iii) χ{1,3}(3)?
(iv) χ{1,3}(4)?
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(b) We define a function f from the set of subsets of [n] = {1, 2, . . . , n} to
the set of functions from [n] to {0, 1} by f (S) = χS. Explain why f is
a bĳection.

(c) Why does the fact that f is a bĳection prove that [n] has 2n subsets?
aThe symbol χ is the Greek letter chi that is pronounced Ki, with the i sounding like “eye.”

In Problems 18, Problem 28, and Problem 33 you gave three proofs of the
following theorem.

Theorem 1.2.7. The number of subsets of an n-element set is 2n .

The proofs in Problem 28 and Problem 33 use essentially the same bĳection,
but they interpret sequences of zeros and ones differently, and so end up being
different proofs. We will give yet another proof, using bĳections similar to those
we used in proving the Pascal Equation, at the beginning of Chapter 2.

1.2.6 The quotient principle

Problem 34.• As we noted in Problem 29, the first question in Problem 8
asked us for the number of three-element subsets of a twelve-element set.
We were able to use the Pascal Equation to get a numerical answer to that
question. Had we had twenty or thirty flavors of ice cream to choose from,
using the Pascal Equation to get our answer would have entailed a good
bit more work. We have seen how the general product principle gives us
an answer to Problem 6. Thus we might think that the number of ways
to choose a three element set from 12 elements is the number of ways to
choose the first element times the number of ways to choose the second
element times the number of ways to choose the third element, which is
12 · 11 · 10 = 1320. However, our result in Problem 29 shows that this is
wrong.

(a) What is it that is different between the number of ways to stack ice
cream in a triple decker cone with three different flavors of ice cream
and the number of ways to simply choose three different flavors of ice
cream?

(b) In particular, how many different triple decker cones use the same
three flavors? (Of course any three distinct flavors could substitute for
vanilla, chocolate and strawberry without changing the answer.)

(c) Using your answer from part b, compute the number of ways to choose
three different flavors of ice cream (out of twelve flavors) from the
number of ways to choose a triple decker cone with three different
flavors (out of twelve flavors).
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Problem 35.• Based on what you observed in Problem 34.c, how many k-
element subsets does an n-element set have?

Problem 36.⇒ The formula you proved in Problem 35 is symmetric in k and
n− k; that is, it gives the same number for (n

k ) as it gives for ( n
n−k ). Whenever

two quantities are counted by the same formula it is good for our insight
to find a bĳection that demonstrates the two sets being counted have the
same size. In fact this is a guiding principle of research in combinatorial
mathematics. Find a bĳection that proves that (n

k ) equals ( n
n−k ). (h)

Problem 37.• In how many ways can we pass out k (identical) ping-pong
balls to n children if each child may get at most one? (h)

Problem 38.• In how many ways may n people sit around a round table?
(Assume that when people are sitting around a round table, all that really
matters is who is to each person’s right. For example, if we can get one
arrangement of people around the table from another by having everyone
get up and move to the right one place and sit back down, we get an
equivalent arrangement of people. Notice that you can get a list from a
seating arrangement by marking a place at the table, and then listing the
people at the table, starting at that place and moving around to the right.)
There are at least two different ways of doing this problem. Try to find them
both. (h)

We are now going to analyze the result of Problem 35 in more detail in order to
tease out another counting principle that we can use in a wide variety of situations.

abc acb bac bca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
bcd bdc cbd cdb dbc dcb
bce bec cbe ceb ebc ecb
bde bed dbe deb ebd edb
cde ced dce dec ecd edc

Table 1.2.8: The 3-element permutations of {a , b , c , d , e} organized by which 3-
element set they permute.
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In Table 1.2.8 we list all three-element permutations from the 5-element set
{a , b , c , d , e}. Each row consists of all 3-element permutations of some subset
of {a , b , c , d , e}. Because a given k-element subset can be listed as a k-element
permutation in k! ways, there are 3! = 6 permutations in each row. Because each
3-element permutation appears exactly once in the table, each row is a block of a
partition of the set of 3-element permutations of {a , b , c , d , e}. Each block has size
six. Each block consists of all 3-element permutations of some three-element subset
of {a , b , c , d , e}. Since there are ten rows, we see that there are ten 3-element subsets
of {a , b , c , d , e}. An alternate way to see this is to observe that we partitioned the set
of all 60 three-element permutations of {a , b , c , d , e} into some number q of blocks,
each of size six. Thus by the product principle, q · 6 = 60, so q = 10.

Problem 39.• Rather than restricting ourselves to n = 5 and k = 3, we can
partition the set of all k-element permutations of S up into blocks. We do so
by letting BK be the set (block) of all k-element permutations of K for each k-
element subset K of S. Thus as in our preceding example, each block consists
of all permutations of some subset K of our n-element set. For example,
the permutations of {a , b , c} are listed in the first row of Table 1.2.8. In fact
each row of that table is a block. The questions that follow are about the
corresponding partition of the set of k-element permutations of S, where S
and k are arbitrary.

(a) How many permutations are there in a block? (h)

(b) Since S has n elements, what does problem 20 tell you about the total
number of k-element permutations of S?

(c) Describe a bĳection between the set of blocks of the partition and the
set of k-element subsets of S. (h)

(d) What formula does this give you for the number (n
k ) of k-element

subsets of an n-element set? (h)

Problem 40.⇒ A basketball team has 12 players. However, only five players
play at any given time during a game.

(a) In how may ways may the coach choose the five players?

(b) To be more realistic, the five players playing a game normally consist
of two guards, two forwards, and one center. If there are five guards,
four forwards, and three centers on the team, in how many ways can
the coach choose two guards, two forwards, and one center? (h)

(c) What if one of the centers is equally skilled at playing forward? (h)
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Problem 41.• In Problem 38, describe a way to partition the n-element per-
mutations of the n people into blocks so that there is a bĳection between
the set of blocks of the partition and the set of arrangements of the n people
around a round table. What method of solution for Problem 38 does this
correspond to?

Problem 42.• In Problems 39.d and 41, you have been using the product
principle in a new way. One of the ways in which we previously stated the
product principle was “If we partition a set into m blocks each of size n,
then the set has size m · n.” In Problems 39.d and 41 we knew the size p of a
set P of permutations of a set, and we knew we had partitioned P into some
unknown number of blocks, each of a certain known size r. If we let q stand
for the number of blocks, what does the product principle tell us about p, q,
and r? What do we get when we solve for q?

The formula you found in the Problem 42 is so useful that we are going to single
it out as another principle. The quotient principle says:

If we partition a set P into q blocks, each of size r, then q = p/r.

The quotient principle is really just a restatement of the product principle, but
thinking about it as a principle in its own right often leads us to find solutions to
problems. Notice that it does not always give us a formula for the number of blocks
of a partition; it only works when all the blocks have the same size. In Chapter 6,
we develop a way to solve problems with different block sizes in cases where there
is a good deal of symmetry in the problem. (The roundness of the table was a
symmetry in the problem of people at a table; the fact that we can order the sets in
any order is the symmetry in the problem of counting k-element subsets.)

In Section A.2 of Appendix A we introduce the idea of an equivalence relation,
see what equivalence relations have to do with partitions, and discuss the quotient
principle from that point of view. While that appendix is not required for what we
are doing here, if you want a more thorough discussion of the quotient principle,
this would be a good time to work through that appendix.

Problem 43. In how many ways may we string n distinct beads on a necklace
without a clasp? (Perhaps we make the necklace by stringing the beads on a
string, and then carefully gluing the two ends of the string together so that
the joint can’t be seen. Assume someone can pick up the necklace, move it
around in space and put it back down, giving an apparently different way
of stringing the beads that is equivalent to the first.) (h)
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Problem 44.⇒ We first gave this problem as Problem 12.a. Now we have
several ways to approach the problem. A tennis club has 2n members. We
want to pair up the members by twos for singles matches.

(a) In how many ways may we pair up all the members of the club? Give
at least two solutions different from the one you gave in Problem 12.a.
(You may not have done Problem 12.a. In that case, see if you can find
three solutions.) (h)

(b) Suppose that in addition to specifying who plays whom, for each
pairing we say who serves first. Now in how many ways may we
specify our pairs? Try to find as many solutions as you can. (h)

Problem 45.• (This becomes especially relevant in Chapter 6, though it
makes an important point here.) In how many ways may we attach two
identical red beads and two identical blue beads to the corners of a square
(with one bead per corner) free to move around in (three-dimensional)
space? (h)

Problem 46.⇒ While the formula you proved in Problems 35 and 39.d is very
useful, it doesn’t give us a sense of how big the binomial coefficients are.
We can get a very rough idea, for example, of the size of (2n

n ) by recognizing
that we can write (2n)n/n! as 2n

n · 2n−1
n−1 · · · n+1

1 , and each quotient is at least
2, so the product is at least 2n . If this were an accurate estimate, it would
mean the fraction of n-element subsets of a 2n-element set would be about
2n/22n = 1/2n , which becomes very small as n becomes large. However it
is pretty clear the approximation will not be a very good one, because some
of the terms in that product are much larger than 2. In fact, if (2n

k ) were the
same for every k, then each would be the fraction 1

2n+1 of 22n . This is much
larger than the fraction 1

2n . But our intuition suggets that (2n
n ) is much larger

than (2n
1 ) and is likely larger than ( 2n

n−1 ) so we can be sure our approximation
is a bad one. For estimates like this, James Stirling developed a formula to
approximate n! when n is large, namely n! is about

(√
2πn

)
nn/en . In fact

the ratio of n! to this expression approaches 1 as n becomes infinite.a We
write this as

n! ∼
√
2πn

nn

en .

We read this notation as n! is asymptotic to
√
2πn nn

en . Use Stirling’s for-
mula to show that the fraction of subsets of size n in an 2n-element set is
approximately 1/

√
πn. This is a much bigger fraction than 1

2n !
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aProving this takes more of a detour than is advisable here; however there is an elementary
proof which you can work through in the problems of the end of Section 1 of Chapter 1 of
Introductory Combinatorics by Kenneth P. Bogart, Harcourt Academic Press, (2000).

1.3 Some Applications of the Basic Principles
1.3.1 Lattice paths and Catalan Numbers

Problem 47.◦ In a part of a city, all streets run either north-south or east-west,
and there are no dead ends. Suppose we are standing on a street corner. In
how many ways may we walk to a corner that is four blocks north and six
blocks east, using as few blocks as possible? (h)

Problem 48.· Problem 47 has a geometric interpretation in a coordinate
plane. A lattice path in the plane is a “curve” made up of line segments
that either go from a point (i , j) to the point (i + 1, j) or from a point (i , j)
to the point (i , j + 1), where i and j are integers. (Thus lattice paths always
move either up or to the right.) The length of the path is the number of such
line segments.

(a) What is the length of a lattice path from (0, 0) to (m , n)?

(b) How many such lattice paths of that length are there? (h)

(c) How many lattice paths are there from (i , j) to (m , n), assuming i, j,
m, and n are integers? (h)

Problem 49.· Another kind of geometric path in the plane is a diagonal
lattice path. Such a path is a path made up of line segments that go from
a point (i , j) to (i + 1, j + 1) (this is often called an upstep) or (i + 1, j − 1)
(this is often called a downstep), again where i and j are integers. (Thus
diagonal lattice paths always move towards the right but may move up or
down.)

(a) Describe which points are connected to (0, 0) by diagonal lattice
paths. (h)

(b) What is the length of a diagonal lattice path from (0, 0) to (m , n)?

(c) Assuming that (m , n) is such a point, how many diagonal lattice paths
are there from (0, 0) to (m , n)? (h)
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Problem 50.◦ A school play requires a ten dollar donation per person; the
donation goes into the student activity fund. Assume that each person who
comes to the play pays with a ten dollar bill or a twenty dollar bill. The
teacher who is collecting the money forgot to get change before the event.
If there are always at least as many people who have paid with a ten as
a twenty as they arrive the teacher won’t have to give anyone an IOU for
change. Suppose 2n people come to the play, and exactly half of them pay
with ten dollar bills.

(a) Describe a bĳection between the set of sequences of tens and twenties
people give the teacher and the set of lattice paths from (0, 0) to (n , n).

(b) Describe a bĳection between the set of sequences of tens and twenties
that people give the teacher and the set of diagonal lattice paths from
(0, 0) and (2n , 0).

(c) In each case, what is the geometric interpretation of a sequence that
does not require the teacher to give any IOUs? (h)

Problem 51.⇒ · Notice that a lattice path from (0, 0) to (n , n) stays inside (or
on the edges of) the square whose sides are the x-axis, the y-axis, the line
x = n and the line y = n. In this problem we will compute the number
of lattice paths from (0,0) to (n , n) that stay inside (or on the edges of) the
triangle whose sides are the x-axis, the line x = n and the line y = x. For
example, in Figure 1.3.1 we show the grid of points with integer coordinates
for the triangle whose sides are the x-axis, the line x = 4 and the line y = x.

1

1

2

5

14

Figure 1.3.1: The lattice paths from (0, 0) to (i , i) for i = 0, 1, 2, 3, 4. The
number of paths to the point (i , i) is shown just above that point.

(a) Explain why the number of lattice paths from (0, 0) to (n , n) that go
outside the triangle is the number of lattice paths from (0, 0) to (n , n)
that either touch or cross the line y = x + 1.

(b) Find a bĳection between lattice paths from (0, 0) to (n , n) that touch
(or cross) the line y = x + 1 and lattice paths from (−1, 1) to (n , n). (h)
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(c) Find a formula for the number of lattice paths from (0, 0) to (n , n) that
do not go above the line y = x. The number of such paths is called a
Catalan Number and is usually denoted by Cn . (h)

Problem 52.⇒ Your formula for the Catalan Number can be expressed as a
binomial coefficient divided by an integer. Whenever we have a formula
that calls for division by an integer, an ideal combinatorial explanation of
the formula is one that uses the quotient principle. The purpose of this
problem is to find such an explanation using diagonal lattice paths.a A
diagonal lattice path that never goes below the y-coordinate of its first point
is called a Dyck Path. We will call a Dyck Path from (0, 0) to (2n , 0) a
Catalan Path of length 2n. Thus the number of Catalan Paths of length 2n
is the Catalan Number Cn .

(a) If a Dyck Path has n steps (each an upstep or downstep), why do the
first k steps form a Dyck Path for each nonnegative k ≤ n?

(b) Thought of as a curve in the plane, a diagonal lattice path can have
many local maxima and minima, and can have several absolute max-
ima and minima, that is, several highest points and several lowest
points. What is the y-coordinate of an absolute minimum point of a
Dyck Path starting at (0, 0)? Explain why a Dyck Path whose rightmost
absolute minimum point is its last point is a Catalan Path. (h)

(c) Let D be the set of all diagonal lattice paths from (0, 0) to (2n , 0). (Thus
these paths can go below the x-axis.) Suppose we partition D by letting
Bi be the set of lattice paths in D that have i upsteps (perhaps mixed
with some downsteps) following the last absolute minimum. How
many blocks does this partition have? Give a succinct description of
the block B0. (h)

(d) How many upsteps are in a Catalan Path?

(e)∗ We are going to give a bĳection between the set of Catalan Paths and
the block Bi for each i between 1 and n. For now, suppose the value
of i, while unknown, is fixed. We take a Catalan path and break it
into three pieces. The piece F (for “front”) consists of all steps before
the ith upstep in the Catalan path. The piece U (for “up”) consists of
the ith upstep. The piece B (for “back”) is the portion of the path that
follows the ith upstep. Thus we can think of the path as FUB. Show
that the function that takes FUB to BUF is a bĳection from the set of
Catalan Paths onto the block Bi of the partition. (Notice that BUF can
go below the x axis.) (h)

(f) Explain how you have just given another proof of the formula for the
Catalan Numbers.
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aThe result we will derive is called the Chung-Feller Theorem; this approach is based of a
paper of Wen-jin Woan “Uniform Partitions of Lattice Paths and Chung-Feller Generalizations,”
American Mathematics Monthly 58 June/July 2001, p556.

1.3.2 The Binomial Theorem

Problem 53.◦ We know that (x + y)2 = x2 + 2x y + y2. Multiply both sides
by (x + y) to get a formula for (x + y)3 and repeat to get a formula for
(x + y)4. Do you see a pattern? If so, what is it? If not, repeat the process
to get a formula for (x + y)5 and look back at Figure 1.2.4 to see the pattern.
Conjecture a formula for (x + y)n .

Problem 54.• When we apply the distributive law n times to (x + y)n , we
get a sum of terms of the form xi yn−i for various values of the integer i. If
it is clear to you that each term of the form xi yn−i that we get comes from
choosing an x from i of the (x + y) factors and a y from the remaining n − i
of the factors and multiplying these choices together, then answer part a of
the problem and skip part b. In either case, be sure to answer part c.

(a) In how many ways can we choose an x from i terms and a y from n − i
terms?

(b) We can take this step-by-step and consider a small case to get started.

(i) Expand the product (x1 + y1)(x2 + y2)(x3 + y3).
(ii) What do you get when you substitute x for each xi and y for each

yi?
(iii) Now imagine expanding

(x1 + y1)(x2 + y2) · · · (xn + yn).

Once you apply the commutative law to the individual terms you
get, you will have a sum of terms of the form

xk1 xk2 · · · xki · yj1 yj2 · · · yjn−i .

What is the set {k1 , k2 , . . . , ki} ∪ { j1 , j2 , . . . , jn−i}?
(iv) In how many ways can you choose the set {k1 , k2 , . . . , ki}?
(v) Once you have chosen this set, how many choices do you have

for { j1 , j2 , . . . , jn−i}?
(vi) If you substitute x for each xi and y for each yi , how many terms

of the form xi yn−i will you have in the expanded product

(x1 + y1)(x2 + y2) · · · (xn + yn) = (x + y)n?
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(vii) How many terms of the form xn−i yi will you have?

(c) Explain how you have just proved your conjecture from Problem 53.
The theorem you have proved is called the Binomial Theorem.

Problem 55. What is
∑10

i=1 (
10
i )3

i? (h)

Problem 56. What is (n
0 )− (n

1 ) + (n
2 )− · · · ± (n

n ) if n is an integer bigger than
0? (h)

Problem 57. Explain why

m∑
i=0

(
m
i

) (
n

k − i

)
=

(
m + n

k

)
.

Find two different explanations. (h)

Problem 58.⇒ From the symmetry of the binomial coefficients, it is not too
hard to see that when n is an odd number, the number of subsets of
{1, 2, . . . , n} of odd size equals the number of subsets of {1, 2, . . . , n} of even
size. Is it true that when n is even the number of subsets of {1, 2, . . . , n} of
even size equals the number of subsets of odd size? Why or why not? (h)

Problem 59.⇒ What is
∑n

i=0 i(n
i )? (Hint: think about how you might use

calculus.) (h)

Notice how the proof you gave of the binomial theorem was a counting argu-
ment. It is interesting that an apparently algebraic theorem that tells us how to
expand a power of a binomial is proved by an argument that amounts to count-
ing the individual terms of the expansion. Part of the reason that combinatorial
mathematics turns out to be so useful is that counting arguments often underlie
important results of algebra. As the algebra becomes more sophisticated, so do the
families of objects we have to count, but nonetheless we can develop a great deal
of algebra on the basis of counting.
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1.3.3 The pigeonhole principle

Problem 60.◦ American coins are all marked with the year in which they
were made. How many coins do you need to have in your hand to guarantee
that on two (at least) of them, the date has the same last digit? (When we
say “to guarantee that on two (at least) of them,. . . ” we mean that you can
find two with the same last digit. You might be able to find three with that
last digit, or you might be able to find one pair with the last digit 1 and one
pair with the last digit 9, or any combination of equal last digits, as long as
there is at least one pair with the same last digit.)

There are many ways in which you might explain your answer to Problem 60.
For example, you can partition the coins according to the last digit of their date;
that is, you put all the coins with a given last digit in a block together, and put
no other coins in that block; repeating until all coins are in some block. Then you
have a partition of your set of coins. If no two coins have the same last digit, then
each block has exactly one coin. Since there are only ten digits, there are at most
ten blocks and so by the sum principle there are at most ten coins. In fact with ten
coins it is possible to have no two with the same last digit, but with 11 coins some
block must have at least two coins in order for the sum of the sizes of at most ten
blocks to be 11. This is one explanation of why we need 11 coins in Problem 60.
This kind of situation arises often in combinatorial situations, and so rather than
always using the sum principle to explain our reasoning , we enunciate another
principle which we can think of as yet another variant of the sum principle. The
pigeonhole principle states that

If we partition a set with more than n elements into n parts, then at least
one part has more than one element.

The pigeonhole principle gets its name from the idea of a grid of little boxes that
might be used, for example, to sort mail, or as mailboxes for a group of people in an
office. The boxes in such grids are sometimes called pigeonholes in analogy with
stacks of boxes used to house homing pigeons when homing pigeons were used to
carry messages. People will sometimes state the principle in a more colorful way
as “if we put more than n pigeons into n pigeonholes, then some pigeonhole has
more than one pigeon.”

Problem 61. Show that if we have a function from a set of size n to a set of
size less than n, then f is not one-to-one. (h)

Problem 62.• Show that if S and T are finite sets of the same size, then a
function f from S to T is one-to-one if and only if it is onto. (h)
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Problem 63.· There is a generalized pigeonhole principle which says that
if we partition a set with more than kn elements into n blocks, then at least
one block has at least k + 1 elements. Prove the generalized pigeonhole
principle. (h)

Problem 64. All the powers of five end in a five, and all the powers of two
are even. Show that for for some integer n, if you take the first n powers of
a prime other than two or five, one must have “01” as the last two digits. (h)

Problem 65.⇒ · Show that in a set of six people, there is a set of at least three
people who all know each other, or a set of at least three people none of
whom know each other. (We assume that if person 1 knows person 2, then
person 2 knows person 1.) (h)

Problem 66.· Draw five circles labeled Al, Sue, Don, Pam, and Jo. Find a
way to draw red and green lines between people so that every pair of people
is joined by a line and there is neither a triangle consisting entirely of red
lines or a triangle consisting of green lines. What does Problem 65 tell you
about the possibility of doing this with six people’s names? What does this
problem say about the conclusion of Problem 65 holding when there are
five people in our set rather than six?

1.3.4 Ramsey Numbers
Problems 65–66 together show that six is the smallest number R with the property
that if we have R people in a room, then there is either a set of (at least) three
mutual acquaintances or a set of (at least) three mutual strangers. Another way to
say the same thing is to say that six is the smallest number so that no matter how
we connect 6 points in the plane (no three on a line) with red and green lines, we
can find either a red triangle or a green triangle. There is a name for this property.
The Ramsey Number R(m , n) is the smallest number R so that if we have R people
in a room, then there is a set of at least m mutual acquaintances or at least n mutual
strangers. There is also a geometric description of Ramsey Numbers; it uses the
idea of a complete graph on R vertices. A complete graph on R vertices consists of
R points in the plane together with line segments (or curves) connecting each two
of the R vertices.1 The points are called vertices and the line segments are called
edges. In Figure 1.3.2 we show three different ways to draw a complete graph on
four vertices. We use Kn to stand for a complete graph on n vertices.

1As you may have guessed, a complete graph is a special case of something called a graph. The word
graph will be defined in Subsection 2.3.1.
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Figure 1.3.2: Three ways to draw a complete graph on four vertices

Our geometric description of R(3, 3) may be translated into the language of
graph theory (which is the subject that includes complete graphs) by saying R(3, 3)
is the smallest number R so that if we color the edges of a KR with two colors,
then we can find in our picture a K3 all of whose edges have the same color. The
graph theory description of R(m , n) is that R(m , n) is the smallest number R so
that if we color the edges of a KR with red and green, then we can find in our
picture either a Km all of whose edges are red or a Kn all of whose edges are green.
Because we could have said our colors in the opposite order, we may conclude that
R(m , n) = R(n ,m). In particular R(n , n) is the smallest number R such that if we
color the edges of a KR with two colors, then our picture contains a Kn all of whose
edges have the same color.

Problem 67.◦ Since R(3, 3) = 6, an uneducated guess might be that R(4, 4) =
8. Show that this is not the case. (h)

Problem 68.· Show that among ten people, there are either four mutual
acquaintances or three mutual strangers. What does this say about R(4, 3)? (h)

Problem 69.· Show that among an odd number of people there is at least one
person who is an acquaintance of an even number of people and therefore
also a stranger to an even number of people. (h)

Problem 70.· Find a way to color the edges of a K8 with red and green so
that there is no red K4 and no green K3. (h)

Problem 71.⇒ · Find R(4, 3). (h)

As of this writing, relatively few Ramsey Numbers are known. R(3, n) is known
for n < 10, R(4, 4) = 18, and R(5, 4) = R(4, 5) = 25.
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1.4 Supplementary Chapter Problems
1.⇒ Remember that we can write n as a sum of n ones. How many plus signs do we
use? In how many ways may we write n as a sum of a list of k positive numbers?
Such a list is called a composition of n into k parts.

2. In Problem 1.4.1 we defined a composition of n into k parts. What is the total
number of compositions of n (into any number of parts).

3.· Write down a list of all 16 zero-one sequences of length four starting with 0000
in such a way that each entry differs from the previous one by changing just one
digit. This is called a Gray Code. That is, a Gray Code for 0-1 sequences of length n
is a list of the sequences so that each entry differs from the previous one in exactly
one place. Can you describe how to get a Gray Code for 0-1 sequences of length
five from the one you found for sequences of length 4? Can you describe how to
prove that there is a Gray code for sequences of length n?

4.⇒ Use the idea of a Gray code from Problem 1.4.3 to prove bĳectively that the
number of even-sized subsets of an n-element set equals the number of odd-sized
subsets of an n-element set.

5.⇒ A list of parentheses is said to be balanced if there are the same number of left
parentheses as right, and as we count from left to right we always find at least as
many left parentheses as right parentheses. For example, (((()()))()) is balanced and
((()) and (()()))(() are not. How many balanced lists of n left and n right parentheses
are there?

6.∗ Suppose we plan to put six distinct computers in a network as shown in Fig-
ure 1.4.1. The lines show which computers can communicate directly with which
others. Consider two ways of assigning computers to the nodes of the network
different if there are two computers that communicate directly in one assignment
and that don’t communicate directly in the other. In how many different ways can
we assign computers to the network?

Figure 1.4.1: A computer network.

7.⇒ In a circular ice cream dish we are going to put four distinct scoops of ice cream
chosen from among twelve flavors. Assuming we place four scoops of the same
size as if they were at the corners of a square, and recognizing that moving the dish
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doesn’t change the way in which we have put the ice cream into the dish, in how
many ways may we choose the ice cream and put it into the dish?

8.⇒ In as many ways as you can, show that (n
k )(

n−k
m ) = (n

m )(n−m
k ).

9.⇒ A tennis club has 4n members. To specify a doubles match, we choose two
teams of two people. In how many ways may we arrange the members into doubles
matches so that each player is in one doubles match? In how many ways may we
do it if we specify in addition who serves first on each team?

10. A town has n streetlights running along the north side of main street. The
poles on which they are mounted need to be painted so that they do not rust. In
how many ways may they be painted with red, white, blue, and green if an even
number of them are to be painted green?

11.∗ We have n identical ping-pong balls. In how many ways may we paint them
red, white, blue, and green?

12.∗ We have n identical ping-pong balls. In how many ways may we paint them
red, white, blue, and green if we use green paint on an even number of them?
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Chapter 2

Applications of Induction and
Recursion in Combinatorics
and Graph Theory

2.1 Some Examples of Mathematical Induction
If you are unfamiliar with the Principle of Mathematical Induction, you should
read Appendix B (a portion of which is repeated here).

2.1.1 Mathematical induction
The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b
2. Show that the truth of the statement for n = k −1 implies the truth

of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us give yet another proof that a set with n elements has 2n

subsets. This proof uses essentially the same bĳections we used in proving the
Pascal Equation. The statement we wish to prove is the statement that “A set of
size n has 2n subsets.”

Our statement is true when n = 0, because a set of size 0 is the empty set
and the empty set has 1 = 20 subsets. (This step of our proof is called a
base step.) Now suppose that k > 0 and every set with k − 1 elements
has 2k−1 subsets. Suppose S = {a1 , a2 , . . . ak} is a set with k elements.
We partition the subsets of S into two blocks. Block B1 consists of the
subsets that do not contain an and block B2 consists of the subsets that
do contain an . Each set in B1 is a subset of {a1 , a2 , . . . ak−1}, and each
subset of {a1 , a2 , . . . ak−1} is in B1. Thus B1 is the set of all subsets of

31
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{a1 , a2 , . . . ak−1}. Therefore by our assumption in the first sentence of
this paragraph, the size of B1 is 2k−1. Consider the function from B2

to B1 which takes a subset of S including ak and removes ak from it.
This function is defined on B2, because every set in B2 contains ak . This
function is onto, because if T is a set in B1, then T ∪ {ak} is a set in B2

which the function sends to T. This function is one-to-one because if V
and W are two different sets in B2, then removing ak from them gives
two different sets in B1. Thus we have a bĳection between B1 and B2,
so B1 and B2 have the same size. Therefore by the sum principle the
size of B1 ∪ B2 is 2k−1 + 2k−1 = 2k . Therefore S has 2k subsets. This
shows that if a set of size k − 1 has 2k−1 subsets, then a set of size k has
2k subsets. Therefore by the principle of mathematical induction, a set
of size n has 2n subsets for every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis. In an
inductive proof we always make an inductive hypothesis as part of proving that
the truth of our statement when n = k − 1 implies the truth of our statement when
n = k. The last paragraph itself is called the inductive step of our proof. In an
inductive step we derive the statement for n = k from the statement for n = k − 1,
thus proving that the truth of our statement when n = k − 1 implies the truth of
our statement when n = k. The last sentence in the last paragraph is called the
inductive conclusion. All inductive proofs should have a base step, an inductive
hypothesis, an inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our base step
was the case n = 0, or in other words, we had b = 0. However, in other proofs, b
could be any integer, positive, negative, or 0. Second, our proof that the truth of our
statement for n = k − 1 implies the truth of our statement for n = k required that
k be at least 1, so that there would be an element ak we could take away in order
to describe our bĳection. However, condition (2) of the principle of mathematical
induction only requires that we be able to prove the implication for k > 0, so we
were allowed to assume k > 0.

2.1.1.1 Strong Mathematical Induction

One way of looking at the principle of mathematical induction is that it tells us
that if we know the “first” case of a theorem and we can derive each other case of
the theorem from a smaller case, then the theorem is true in all cases. However
the particular way in which we stated the theorem is rather restrictive in that
it requires us to derive each case from the immediately preceding case. This
restriction is not necessary, and removing it leads us to a more general statement
of the principal of mathematical induction which people often call the strong
principle of mathematical induction. It states:

In order to prove a statement about an integer n if we can

1. prove our statement when n = b and
2. prove that the statements we get with n = b, n = b+1, . . . n = k−1

imply the statement with n = k,

then our statement is true for all integers n ≥ b.
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You will find some explicit examples of the use of the strong principle of mathe-
matical induction in Appendix B and will find some uses for it in this chapter.

2.1.2 Binomial Coefficients and the Binomial Theorem

Problem 72.• When we studied the Pascal Equation and subsets in Chapter 1,
it may have appeared that there is no connection between the Pascal relation
(n

k ) = (n−1
k−1 ) + (n−1

k ) and the formula (n
k ) =

n!
k!(n−k)! . Of course you probably

realize you can prove the Pascal relation by substituting the values the
formula gives you into the right-hand side of the equation and simplifying
to give you the left hand side. In fact, from the Pascal Relation and the facts
that (n

0 ) = 1 and (n
n ) = 1, you can actually prove the formula for (n

k ) by
induction on n. Do so. (h)

Problem 73.⇒ Use the fact that (x + y)n = (x + y)(x + y)n−1 to give an
inductive proof of the binomial theorem. (h)

Problem 74. Suppose that f is a function defined on the nonnegative inte-
gers such that f (0) = 3 and f (n) = 2 f (n − 1). Find a formula for f (n) and
prove your formula is correct.

Problem 75. Prove the conjecture in Part 13.b for an arbitrary positive inte-
ger m without appealing to the general product principle. (h)

2.1.3 Inductive definition
You may have seen n! described by the two equations 0! = 1 and n! = n(n − 1)!
for n > 0. By the principle of mathematical induction we know that this pair of
equations defines n! for all nonnegative numbers n. For this reason we call such
a definition an inductive definition. An inductive definition is sometimes called
a recursive definition. Often we can get very easy proofs of useful facts by using
inductive definitions.

Problem 76.⇒ An inductive definition of an for nonnegative n is given by
a0 = 1 and an = aan−1. (Notice the similarity to the inductive definition of
n!.) We remarked above that inductive definitions often give us easy proofs
of useful facts. Here we apply this inductive definition to prove two useful
facts about exponents that you have been using almost since you learned
the meaning of exponents.
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(a) Use this definition to prove the rule of exponents am+n = am an for
nonnegative m and n. (h)

(b) Use this definition to prove the rule of exponents amn = (am)n . (h)

Problem 77.+ Suppose that f is a function on the nonnegative integers such
that f (0) = 0 and f (n) = n+ f (n−1). Prove that f (n) = n(n+1)/2. Notice
that this gives a third proof that 1 + 2 + · · · + n = n(n + 1)/2, because this
sum satisfies the two conditions for f . (The sum has no terms and is thus 0
when n = 0.)

Problem 78.⇒ Give an inductive definition of the summation notation∑n
i=1 ai . Use it and the distributive law b(a + c) = ba + bc to prove the

distributive law

b
n∑

i=1

ai =
n∑

i=1

bai .

2.1.4 Proving the general product principle (Optional)
We stated the sum principle as

If we have a partition of a set S, then the size of S is the sum of the sizes
of the blocks of the partition.

In fact, the simplest form of the sum principle says that the size of the sum of two
disjoint (finite) sets is the sum of their sizes.

Problem 79. Prove the sum principle we stated for partitions of a set from
the simplest form of the sum principle. (h)

We stated the simplest form of the product principle as

If we have a partition of a set S into m blocks, each of size n, then S has
size mn.

In Problem 14 we gave a more general form of the product principle which can be
stated as

Let S be a set of functions f from [n] to some set X. Suppose that

• there are k1 choices for f (1), and
• suppose that for each choice of f (1), f (2), . . . f (i − 1), there are ki

choices for f (i).

Then the number of functions in the set S is k1k2 · · · kn .
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Problem 80.+ Prove the general form of the product principle from the sim-
plest form of the product principle. (h)

2.1.5 Double Induction and Ramsey Numbers
In Section 1.3.4 we gave two different descriptions of the Ramsey number R(m , n).
However if you look carefully, you will see that we never showed that Ramsey
numbers actually exist; we merely described what they were and showed that
R(3, 3) and R(3, 4) exist by computing them directly. As long as we can show that
there is some number R such that when there are R people together, there are
either m mutual acquaintances or n mutual strangers, this shows that the Ramsey
Number R(m , n) exists, because it is the smallest such R. Mathematical induction
allows us to show that one such R is (m+n−2

m−1 ). The question is, what should we
induct on, m or n? In other words, do we use the fact that with (m+n−3

m−2 ) people
in a room there are at least m − 1 mutual acquaintances or n mutual strangers, or
do we use the fact that with at least (m+n−3

n−2 ) people in a room there are at least m
mutual acquaintances or at least n − 1 mutual strangers? It turns out that we use
both. Thus we want to be able to simultaneously induct on m and n. One way to
do that is to use yet another variation on the principle of mathematical induction,
the Principle of Double Mathematical Induction. This principle (which can be
derived from one of our earlier ones) states that

In order to prove a statement about integers m and n, if we can

1. Prove the statement when m = a and n = b, for fixed integers a
and b

2. Prove the statement when m = a and n > b and when m > a and
n = b (for the same fixed integers a and b),

3. Show that the truth of the statement for m = j and n = k − 1 (with
j ≥ a and k > b) and the truth of the statement for m = j − 1 and
n = k (with j > a and k ≥ b) imply the truth of the statement for
m = j and n = k,

then we can conclude the statement is true for all pairs of integers m ≥ a
and n ≥ b.

There is a strong version of double induction, and it is actually easier to state. The
principle of strong double mathematical induction says the following.

In order to prove a statement about integers m and n, if we can

1. Prove the statement when m = a and n = b, for fixed integers a
and b.

2. Show that the truth of the statemetn for values of m and n with
a + b ≤ m + n < k imples the truth of the statment for m + n = k,

then we can conclude that the statement is true for all pairs of integers
m ≥ a and n ≥ b.
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Problem 81.⇒ · Prove that R(m , n) exists by proving that if there are (m+n−2
m−1 )

people in a room, then there are either at least m mutual acquaintances or
at least n mutual strangers. (h)

Problem 82.· Prove that R(m , n) ≤ R(m − 1, n) + R(m , n − 1). (h)

Problem 83.⇒ ·
(a) What does the equation in Problem 82 tell us about R(4, 4)?

(b)∗ Consider 17 people arranged in a circle such that each person is ac-
quainted with the first, second, fourth, and eighth person to the right
and the first, second, fourth, and eighth person to the left. can you
find a set of four mutual acquaintances? Can you find a set of four
mutual strangers? (h)

(c) What is R(4, 4)?

Problem 84. (Optional) Prove the inequality of Problem 81 by induction on
m + n.

Problem 85. Use Stirling’s approximation (Problem 46) to convert the upper
bound for R(n , n) that you get from Problem 81 to a multiple of a power of
an integer.

2.1.6 A bit of asymptotic combinatorics
Problem 83 gives us an upper bound on R(n , n). A very clever technique due to
Paul Erdös, called the “probabilistic method,” will give a lower bound. Since both
bounds are exponential in n, they show that R(n , n) grows exponentially as n gets
large. An analysis of what happens to a function of n as n gets large is usually called
an asymptotic analysis. The probabilistic method, at least in its simpler forms,
can be expressed in terms of averages, so one does not need to know the language
of probability in order to understand it. We will apply it to Ramsey numbers in
the next problem. Combined with the result of Problem 83, this problem will give
us that

√
2

n
< R(n , n) < 22n−2, so that we know that the Ramsey number R(n , n)

grows exponentially with n.
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Problem 86.⇒ Suppose we have two numbers n and m. We consider all
possible ways to color the edges of the complete graph Km with two colors,
say red and blue. For each coloring, we look at each n-element subset N of
the vertex set M of Km . Then N together with the edges of of Km connecting
vertices in N forms a complete graph on n vertices. This graph, which we
denote by KN , has its edges colored by the original coloring of the edges of
Km .

(a) Why is it that if there is no subset N ⊆ M so that all the edges of KN
are colored the same color, then R(n , n) > m? (h)

(b) To apply the probabilistic method, we are going to compute the av-
erage, over all colorings of Km , of the number of sets N ⊆ M with
|N | = n such that KN does have all its edges the same color. Explain
why it is that if the average is less than 1, then for some coloring there
is no set N such that KN has all its edges colored the same color. Why
does this mean that R(n , n) > m? (h)

(c) We call a KN monochromatic for a coloring c of Km if the color c(e)
assigned to edge e is the same for every edge e of KN . Let us define
mono(c ,N) to be 1 if N is monochromatic for c and to be 0 otherwise.
Find a formula for the average number of monochromatic KNs over all
colorings of Km that involves a double sum first over all edge colorings
c of Km and then over all n-element subsets N ⊆ M of mono(c ,N). (h)

(d) Show that your formula for the average reduces to 2(m
n ) · 2−(

n
2
)

(h)

(e) Explain why R(n , n) > m if (m
n ) ≤ 2(

n
2
)−1. (h)

(f)∗ Explain why R(n , n) >
n
√

n!2(
n
2
)−1. (h)

(g) By using Stirling’s formula, show that if n is large enough, then
R(n , n) >

√
2n =

√
2

n . (Here large enough means large enough for
Stiirling’s formula to be reasonable accurate.)

2.2 Recurrence Relations

Problem 87. How is the number of subsets of an n-element set related to
the number of subsets of an (n−1)-element set? Prove that you are correct. (h)

Problem 88. Explain why it is that the number of bĳections from an n-
element set to an n-element set is equal to n times the number of bĳections
from an (n − 1)-element subset to an (n − 1)-element set. What does this
have to do with Problem 27?
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We can summarize these observations as follows. If sn stands for the number
of subsets of an n-element set, then

sn = 2sn−1 , (2.1)

and if bn stands for the number of bĳections from an n-element set to an n-element
set, then

bn = nbn−1. (2.2)

Equations (2.1) and (2.2) are examples of recurrence equations or recurrence
relations. A recurrence relation or simply a recurrence is an equation that ex-
presses the nth term of a sequence an in terms of values of ai for i < n. Thus
Equations (2.1) and (2.2) are examples of recurrences.

2.2.1 Examples of recurrence relations
Other examples of recurrences are

an = an−1 + 7, (2.3)

an = 3an−1 + 2n , (2.4)

an = an−1 + 3an−2 , and (2.5)

an = a1an−1 + a2an−2 + · · ·+ an−1a1. (2.6)

A solution to a recurrence relation is a sequence that satisfies the recurrence
relation. Thus a solution to Recurrence (2.1) is sn = 2n . Note that sn = 17 · 2n

and sn = −13 · 2n are also solutions to Recurrence (2.1). What this shows is that a
recurrence can have infinitely many solutions. In a given problem, there is generally
one solution that is of interest to us. For example, if we are interested in the number
of subsets of a set, then the solution to Recurrence (2.1) that we care about is sn = 2n .
Notice this is the only solution we have mentioned that satisfies s0 = 1.

Problem 89. Show that there is only one solution to Recurrence (2.1) that
satisfies s0 = 1.

Problem 90. A first-order recurrence relation is one which expresses an in
terms of an−1 and other functions of n, but which does not include any of
the terms ai for i < n − 1 in the equation.

(a) Which of the recurrences (2.1) through (2.6) are first order recurrences?

(b) Show that there is one and only one sequence an that is defined for
every nonnegative integer n, satisfies a given first order recurrence,
and satisfies a0 = a for some fixed constant a. (h)
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Figure 2.2.1: The Towers of Hanoi Puzzle

Problem 91.⇒ The “Towers of Hanoi” puzzle has three rods rising from a
rectangular base with n rings of different sizes stacked in decreasing order
of size on one rod. A legal move consists of moving a ring from one rod to
another so that it does not land on top of a smaller ring. If mn is the number
of moves required to move all the rings from the initial rod to another rod
that you choose, give a recurrence for mn . (Hint: suppose you already knew
the number of moves needed to solve the puzzle with n − 1 rings.) (h)

Problem 92.⇒ We draw n mutually intersecting circles in the plane so that
each one crosses each other one exactly twice and no three intersect in
the same point. (As examples, think of Venn diagrams with two or three
mutually intersecting sets.) Find a recurrence for the number rn of regions
into which the plane is divided by n circles. (One circle divides the plane
into two regions, the inside and the outside.) Find the number of regions
with n circles. For what values of n can you draw a Venn diagram showing
all the possible intersections of n sets using circles to represent each of the
sets? (h)

2.2.2 Arithmetic Series (optional)

Problem 93. A child puts away two dollars from her allowance each week.
If she starts with twenty dollars, give a recurrence for the amount an of
money she has after n weeks and find out how much money she has at the
end of n weeks.

Problem 94. A sequence that satisfies a recurrence of the form an = an−1+ c
is called an arithmetic progression. Find a formula in terms of the initial
value a0 and the common difference c for the term an in an arithmetic
progression and prove you are right.

Problem 95. A person who is earning $50,000 per year gets a raise of $3000
a year for n years in a row. Find a recurrence for the amount an of money
the person earns over n + 1 years. What is the total amount of money that
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the person earns over a period of n + 1 years? (In n + 1 years, there are n
raises.)

Problem 96. An arithmetic series is a sequence sn equal to the sum of the
terms a0 through an of of an arithmetic progression. Find a recurrence for
the sum sn of an arithmetic progression with initial value a0 and common
difference c (using the language of Problem 94). Find a formula for general
term sn of an arithmetic series.

2.2.3 First order linear recurrences
Recurrences such as those in Equations (2.1) through (2.5) are called linear recur-
rences, as are the recurrences of Problems 91 and Problem 92. A linear recurrence
is one in which an is expressed as a sum of functions of n times values of (some of
the terms) ai for i < n plus (perhaps) another function (called the driving function)
of n. A linear equation is called homogeneous if the driving function is zero (or, in
other words, there is no driving function). It is called a constant coefficient linear
recurrence if the functions that are multiplied by the ai terms are all constants (but
the driving function need not be constant).

Problem 97. Classify the recurrences in Equations (2.1) through (2.5) and
Problems 91 and Problem 92 according to whether or not they are constant
coefficient, and whether or not they are homogeneous.

Problem 98.• As you can see from Problem 97 some interesting sequences
satisfy first order linear recurrences, including many that have constant co-
efficients, have constant driving term, or are homogeneous. Find a formula
in terms of b, d, a0 and n for the general term an of a sequence that satisfies
a constant coefficient first order linear recurrence an = ban−1 + d and prove
you are correct. If your formula involves a summation, try to replace the
summation by a more compact expression. (h)

2.2.4 Geometric Series
A sequence that satisfies a recurrence of the form an = ban−1 is called a geometric
progression. Thus the sequence satisfying Equation (2.1), the recurrence for the
number of subsets of an n-element set, is an example of a geometric progression.
From your solution to Problem 98, a geometric progression has the form an = a0bn .
In your solution to Problem 98 you may have had to deal with the sum of a geometric
progression in just slightly different notation, namely

∑n−1
i=0 dbi . A sum of this form

is called a (finite) geometric series.
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Problem 99. Do this problem only if your final answer (so far) to Problem 98
contained the sum

∑n−1
i=0 dbi .

(a) Expand (1− x)(1+ x). Expand (1− x)(1+ x + x2). Expand (1− x)(1+
x + x2 + x3).

(b) What do you expect (1− b)
∑n−1

i=0 dbi to be? What formula for
∑n−1

i=0 dbi

does this give you? Prove that you are correct.

In Problem 98 and perhaps 99 you proved an important theorem.

Theorem 2.2.2. If b " 1 and an = ban−1 + d, then an = a0bn + d
1 − bn

1 − b
. If b = 1,

then, an = a0 + nd

Corollary 2.2.3. If b " 1, then
n−1∑
i=0

bi =
1 − bn

1 − b
. If b = 1,

n−1∑
i=0

bi = n.

2.3 Graphs and Trees
2.3.1 Undirected graphs
In Section 1.3.4 we introduced the idea of a directed graph. Graphs consist of
vertices and edges. We describe vertices and edges in much the same way as we
describe points and lines in geometry: we don’t really say what vertices and edges
are, but we say what they do. We just don’t have a complicated axiom system the
way we do in geometry. A graph consists of a set V called a vertex set and a set
E called an edge set. Each member of V is called a vertex and each member of
E is called an edge. Associated with each edge are two (not necessarily different)
vertices called its endpoints. We draw pictures of graphs by drawing points to
represent the vertices and line segments (curved if we choose) whose endpoints
are at vertices to represent the edges. In Figure 2.3.1 we show three pictures of
graphs.
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Figure 2.3.1: Three different graphs

Each gray circle in the figure represents a vertex; each line segment represents
an edge. You will note that we labelled the vertices; these labels are names we chose
to give the vertices. We can choose names or not as we please. The third graph
also shows that it is possible to have an edge that connects a vertex (like the one
labelled y) to itself or it is possible to have two or more edges (like those between
vertices v and y) between two vertices. The degree of a vertex is the number of
times it appears as the endpoint of edges; thus the degree of y in the third graph
in the figure is four.

Problem 100.◦ In the graph on the left in Figure 2.3.1, what is the degree of
each vertex?

Problem 101.◦ For each graph in Figure 2.3.1 is the number of vertices of
odd degree even or odd?

Problem 102.⇒ · The sum of the degrees of the vertices of a (finite) graph is
related in a natural way to the number of edges.

(a) What is the relationship? (h)

(b) Find a proof that what you say is correct that uses induction on the
number of edges. Hint: To make your inductive step, think about
what happens to a graph if you delete an edge. (h)



2.3. Graphs and Trees 43

(c) Find a proof that what you say is correct that uses induction on the
number of vertices.

(d) Find a proof that what you say is correct that does not use induction. (h)

Problem 103.· What can you say about the number of vertices of odd degree
in a graph? (h)

2.3.2 Walks and paths in graphs
A walk in a graph is an alternating sequence v0e1v1 . . . ei vi of vertices and edges
such that edge ei connects vertices vi−1 and vi . A graph is called connected if, for
any pair of vertices, there is a walk starting at one and ending at the other.

Problem 104. Which of the graphs in Figure 2.3.1 is connected?

Problem 105.◦ A path in a graph is a walk with no repeated vertices. Find
the longest path you can in the third graph of Figure 2.3.1.

Problem 106.◦ A cycle in a graph is a walk whose first and last vertex are
equal but which has no other repeated vertices. Which graphs in Figure 2.3.1
have cycles? What is the largest number of edges in a cycle in the second
graph in Figure 2.3.1? What is the smallest number of edges in a cycle in
the third graph in Figure 2.3.1?

Problem 107.◦ A connected graph with no cycles is called a tree. Which
graphs, if any, in Figure 2.3.1 are trees?

2.3.3 Counting vertices, edges, and paths in trees

Problem 108.⇒ · Draw some trees and on the basis of your examples, make a
conjecture about the relationship between the number of vertices and edges
in a tree. Prove your conjecture. (Hint: what happens if you choose an edge
and delete it, but not its endpoints?) (h)
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Problem 109.· What is the minimum number of vertices of degree one in a
finite tree? What is it if the number of vertices is bigger than one? Prove
that you are correct. (h)

Problem 110.⇒ · In a tree, given two vertices, how many paths can you find
between them? Prove that you are correct.

Problem 111.⇒ ∗ How many trees are there on the vertex set {1, 2}? On the
vertex set {1, 2, 3}? When we label the vertices of our tree, we consider the
tree which has edges between vertices 1 and 2 and between vertices 2 and 3
different from the tree that has edges between vertices 1 and 3 and between
2 and 3. See Figure 2.3.2.

1 2
3

2 3
1

2 1
3

Figure 2.3.2: The three labelled trees on three vertices

How many (labelled) trees are there on four vertices? You don’t have a lot
of data to guess from, but try to guess a formula for the number of labelled
trees with vertex set {1, 2, · · · , n}. (h)

We are now going to introduce a method to prove the formula you guessed.
Given a tree with two or more vertices, labelled with positive integers, we define a
sequence b1 , b2 , . . . of integers inductively as follows: If the tree has two vertices,
the sequence consists of one entry, namely the label of the vertex with the larger
label. Otherwise, let a1 be the lowest numbered vertex of degree 1 in the tree. Let
b1 be the label of the unique vertex in the tree adjacent to a1 and write down b1.
For example, in the first graph in Figure 2.3.1, a1 is 1 and b1 is 2. Given a1 through
ai−1, let ai be the lowest numbered vertex of degree 1 in the tree you get by deleting
a1 through ai−1and let bi be the unique vertex in this new tree adjacent to ai . For
example, in the first graph in Figure 2.3.1, a2 = 2 and b2 = 3. Then a3 = 5 and
b3 = 4. We use b to stand for the sequence of bis we get in this way. In the tree (the
first graph) in Figure 2.3.1, the sequence b is 2344378. (If you are unfamiliar with
inductive (recursive) definition, you might want to write down some other labelled
trees on eight vertices and construct the sequence of bis.)

Problem 112.
(a) How long will the sequence of bis be if it is computed from a tree with

n vertices (labelled with 1 through n)?

(b) What can you say about the last member of the sequence of bis? (h)
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(c) Can you tell from the sequence of bis what a1is? (h)

(d) Find a bĳection between labelled trees and something you can “count”
that will tell you how many labelled trees there are on n labelled
vertices. (h)

The sequence b1 , b2 , . . . , bn−2 in Problem 111 is called a Prüfer coding or Prüfer
code for the tree. There is a good bit of interesting information encoded into the
Prüfer code for a tree.

Problem 113. What can you say about the vertices of degree one from the
Prüfer code for a tree labeled with the integers from 1 to b? (h)

Problem 114. What can you say about the Prüfer code for a tree with exactly
two vertices of degree 1? (and perhaps some vertices with other degrees as
well)? Does this characterize such trees?

Problem 115.⇒ What can you determine about the degree of the vertex la-
belled i from the Prüfer code of the tree? (h)

Problem 116.⇒ What is the number of (labelled) trees on n vertices with three
vertices of degree 1? (Assume they are labelled with the integers 1 through
n.) This problem will appear again in the next chapter after some material
that will make it easier. (h)

2.3.4 Spanning trees
Many of the applications of trees arise from trying to find an efficient way to connect
all the vertices of a graph. For example, in a telephone network, at any given time
we have a certain number of wires (or microwave channels, or cellular channels)
available for use. These wires or channels go from a specific place to a specific
place. Thus the wires or channels may be thought of as edges of a graph and the
places the wires connect may be thought of as vertices of that graph. A tree whose
edges are some of the edges of a graph G and whose vertices are all of the vertices
of the graph G is called a spanning tree of G. A spanning tree for a telephone
network will give us a way to route calls between any two vertices in the network.
In Figure 2.3.3 we show a graph and all its spanning trees.
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Figure 2.3.3: A graph and all its spanning trees.

Problem 117. Show that every connected graph has a spanning tree. It is
possible to find a proof that starts with the graph and works “down” towards
the spanning tree and to find a proof that starts with just the vertices and
works “up” towards the spanning tree. Can you find both kinds of proof?

2.3.5 Minimum cost spanning trees
Our motivation for talking about spanning trees was the idea of finding a min-
imum number of edges we need to connect all the edges of a communication
network together. In many cases edges of a communication network come with
costs associated with them. For example, one cell-phone operator charges another
one when a customer of the first uses an antenna of the other. Suppose a company
has offices in a number of cities and wants to put together a communication net-
work connecting its various locations with high-speed computer communications,
but to do so at minimum cost. Then it wants to take a graph whose vertices are the
cities in which it has offices and whose edges represent possible communications
lines between the cities. Of course there will not necessarily be lines between each
pair of cities, and the company will not want to pay for a line connecting city i and
city j if it can already connect them indirectly by using other lines it has chosen.
Thus it will want to choose a spanning tree of minimum cost among all spanning
trees of the communications graph. For reasons of this application, if we have a
graph with numbers assigned to its edges, the sum of the numbers on the edges of
a spanning tree of G will be called the cost of the spanning tree.

Problem 118.⇒ Describe a method (or better, two methods different in at least
one aspect) for finding a spanning tree of minimum cost in a graph whose
edges are labelled with costs, the cost on an edge being the cost for including
that edge in a spanning tree. Prove that your method(s) work. (h)

The method you used in Problem 118 is called a greedy method, because each
time you made a choice of an edge, you chose the least costly edge available to
you.
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2.3.6 The deletion/contraction recurrence for spanning trees
There are two operations on graphs that we can apply to get a recurrence (though
a more general kind than those we have studied for sequences) which will let us
compute the number of spanning trees of a graph. The operations each apply to an
edge e of a graph G. The first is called deletion; we delete the edge e from the graph
by removing it from the edge set. Figure 2.3.4 shows how we can delete edges from
a graph to get a spanning tree.

Figure 2.3.4: Deleting two appropriate edges from this graph gives a spanning tree.

The second operation is called contraction.
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Figure 2.3.5: The results of contracting three different edges in a graph.

Contractions of three different edges in the same graph are shown in Figure 2.3.5.
Intuitively, we contract an edge by shrinking it in length until its endpoints coincide;
we let the rest of the graph “go along for the ride.” To be more precise, we contract
the edge e with endpoints v and w as follows:

1. remove all edges having either v or w or both as an endpoint from the edge
set,

2. remove v and w from the vertex set,

3. add a new vertex E to the vertex set,

4. add an edge from E to each remaining vertex that used to be an endpoint of
an edge whose other endpoint was v or w, and add an edge from E to E for
any edge other than e whose endpoints were in the set {v , w}.

We use G − e (read as G minus e) to stand for the result of deleting e from G,
and we use G/e (read as G contract e) to stand for the result of contracting e from
G.
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Problem 119.⇒ ·
(a) How do the number of spanning trees of G not containing the edge

e and the number of spanning trees of G containing e relate to the
number of spanning trees of G − e and G/e? (h)

(b) Use (G) to stand for the number of spanning trees of G (so that, for
example, (G/e) stands for the number of spanning trees of G/e).
Find an expression for (G) in terms of (G/e) and (G − e). This
expression is called the deletion-contraction recurrence.

(c) Use the recurrence of the previous part to compute the number of
spanning trees of the graph in Figure 2.3.6.

1 2

3

4

5

Figure 2.3.6: A graph.

2.3.7 Shortest paths in graphs
Suppose that a company has a main office in one city and regional offices in other
cities. Most of the communication in the company is between the main office and
the regional offices, so the company wants to find a spanning tree that minimizes
not the total cost of all the edges, but rather the cost of communication between the
main office and each of the regional offices. It is not clear that such a spanning tree
even exists. This problem is a special case of the following. We have a connected
graph with nonnegative numbers assigned to its edges. (In this situation these
numbers are often called weights.) The (weighted) length of a path in the graph
is the sum of the weights of its edges. The distance between two vertices is the
least (weighted) length of any path between the two vertices. Given a vertex v, we
would like to know the distance between v and each other vertex, and we would
like to know if there is a spanning tree in G such that the length of the path in the
spanning tree from v to each vertex x is the distance from v to x in G.

Problem 120. Show that the following algorithm (known as Dĳkstra’s algo-
rithm) applied to a weighted graph whose vertices are labelled 1 to n gives,
for each i, the distance from vertex 1 to i as d(i).

1. Let d(1) = 0. Let d(i) = ∞ for all other i. Let v(1)=1. Let v( j) = 0 for
all other j. For each i and j, let w(i , j) be the minimum weight of an



2.4. Supplementary Problems 49

edge between i and j, or ∞ if there are no such edges. Let k = 1. Let
t = 1.

2. For each i, if d(i) > d(k) + w(k , i) let d(i) = d(k) + w(k , i).

3. Among those i with v(i) = 0, choose one with d(i) a minimum, and
let k = i. Increase t by 1. Let v(i) = 1.

4. Repeat the previous two steps until t = n

Problem 121. Is there a spanning tree such that the distance from vertex 1
to vertex i given by the algorithm in Problem 120 is the distance for vertex
1 to vertex i in the tree (using the same weights on the edges, of course)?

2.4 Supplementary Problems
1. Use the inductive definition of an to prove that (ab)n = an bn for all nonnegative
integers n.

2. Give an inductive definition of
n⋃

i=1

Si and use it and the two set distributive law

to prove the distributive law A ∩
n⋃

i=1

Si =
n⋃

i=1

A ∩ Si .

3.⇒ A hydrocarbon molecule is a molecule whose only atoms are either carbon atoms
or hydrogen atoms. In a simple molecular model of a hydrocarbon, a carbon atom
will bond to exactly four other atoms and hydrogen atom will bond to exactly one
other atom. Such a model is shown in Figure 2.4.1. We represent a hydrocarbon
compound with a graph whose vertices are labelled with C’s and H’s so that each C
vertex has degree four and each H vertex has degree one. A hydrocarbon is called
an “alkane” Common examples are methane (natural gas), butane (one version
of which is shown in Figure 2.4.1)propane, hexane (ordinary gasoline), octane (to
make gasoline burn more slowly), etc.

Figure 2.4.1: A model of a butane molecule

(a) How many vertices are labelled H in the graph of an alkane with exactly n
vertices labelled C?
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(b) An alkane is called butane if it has four carbon atoms. Why do we say one
version of butane is shown in Figure 2.4.1?

4.
(a) Give a recurrence for the number of ways to divide 2n people into sets of two

for tennis games. (Don’t worry about who serves first.)
(b) Give a recurrence for the number of ways to divide 2n people into sets of two

for tennis games and to determine who serves first.

5.⇒ Give a recurrence for the number of ways to divide 4n people into sets of four
for games of bridge. (Don’t worry about how they sit around the bridge table or
who is the first dealer.)

6. Use induction to prove your result in Supplementary Problem 1.4.2 at the end
of Chapter 1.

7. Give an inductive definition of the product notation
n∏

i=1

ai .

8. Using the fact that (ab)k = ak bk , use your inductive definition of product nota-

tion in Problem 2.4.7 to prove that
(

n∏
i=1

ai

) k

=
n∏

i=1

ak
i .

9.⇒ How many labelled trees on n vertices have exactly four vertices of degree 1?

10.⇒ ∗ The degree sequence of a tree is a list of the degrees of the vertices in nonin-
creasing order. For example the degree sequence of the first graph in Figure 2.3.3
is (4, 3, 2, 2, 1). For a graph with vertices labeled 1 through n, the ordered degree
sequence of the graph is the sequence (d1 , d2 , . . . , dn) in which di is the degree of
vertex i. For example, the ordered degree sqeuence of the first graph in Figure 2.3.1
is (1, 2, 3, 3, 1, 1, 2, 1).
(a) How many labelled trees are there on n vertices with ordered degree sequence

d1 , d2 , . . . dn? (This problem appears again in the next chapter since some ideas
in that chapter make it more straightforward.)

(b) How many labeled trees are there on n vertices with the degree sequence in
which the degree d appears id times?



Chapter 3

Distribution Problems

3.1 The idea of a distribution
Many of the problems we solved in Chapter 1 may be thought of as problems of
distributing objects (such as pieces of fruit or ping-pong balls) to recipients (such as
children). Some of the ways of viewing counting problems as distribution problems
are somewhat indirect. For example, in Problem 37 you probably noticed that the
number of ways to pass out k ping-pong balls to n children so that no child gets
more than one is the number of ways that we may choose a k-element subset of an
n-element set. We think of the children as recipients and objects we are distributing
as the identical ping-pong balls, distributed so that each recipient gets at most one
ball. Those children who receive an object are in our set. It is helpful to have
more than one way to think of solutions to problems. In the case of distribution
problems, another popular model for distributions is to think of putting balls in
boxes rather than distributing objects to recipients. Passing out identical objects
is modeled by putting identical balls into boxes. Passing out distinct objects is
modeled by putting distinct balls into boxes.

3.1.1 The twentyfold way
When we are passing out objects to recipients, we may think of the objects as
being either identical or distinct. We may also think of the recipients as being
either identical (as in the case of putting fruit into plastic bags in the grocery store)
or distinct (as in the case of passing fruit out to children). We may restrict the
distributions to those that give at least one object to each recipient, or those that
give exactly one object to each recipient, or those that give at most one object to
each recipient, or we may have no such restrictions. If the objects are distinct, it
may be that the order in which the objects are received is relevant (think about
putting books onto the shelves in a bookcase) or that the order in which the objects
are received is irrelevant (think about dropping a handful of candy into a child’s
trick or treat bag). If we ignore the possibility that the order in which objects are
received matters, we have created 2 · 2 · 4 = 16 distribution problems. In the cases
where a recipient can receive more than one distinct object, we also have four more
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problems when the order objects are received matters. Thus we have 20 possible
distribution problems.

The Twentyfold Way: A Table of Distribution Problems
k objects and conditions
on how they are received

n recipients and mathematical
model for distribution

Distinct Identical
1. Distinct
no conditions

nk

functions
?

set partitions (≤ n parts)

2. Distinct
Each gets at most one

nk

k-element
permutations

1 if k ≤ n;
0 otherwise

3. Distinct
Each gets at least one

?

onto functions
?

set partitions (n parts)
4. Distinct
Each gets exactly one

k! = n!
permutations

1 if k = n;
0 otherwise

5. Distinct,
order matters

?
?

?
?

6. Distinct,
order matters
Each gets at least one

?
?

?
?

7. Identical
no conditions

?
?

?
?

8. Identical
Each gets at most one

(n
k )

subsets
1 if k ≤ n;

0 otherwise
9. Identical
Each gets at least one

?
?

?
?

10. Identical
Each gets exactly one

1 if k = n;
0 otherwise

1 if k = n;
0 otherwise

Table 3.1.1: An incomplete table of the number of ways to distribute k objects to n
recipients, with restrictions on how the objects are received

We describe these problems in Table 3.1.1. Since there are twenty possible dis-
tribution problems, we call the table the “Twentyfold Way,” adapting terminology
suggested by Joel Spencer for a more restricted class of distribution problems. In
the first column of the table we state whether the objects are distinct (like people)
or identical (like ping-pong balls) and then give any conditions on how the ob-
jects may be received. The conditions we consider are whether each recipient gets
at most one object, whether each recipient gets at least one object, whether each
recipient gets exactly one object, and whether the order in which the objects are
received matters. In the second column we give the solution to the problem and
the name of the mathematical model for this kind of distribution problem when the
recipients are distinct, and in the third column we give the same information when
the recipients are identical. We use question marks as the answers to problems we
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have not yet solved and models we have not yet studied. We give explicit answers
to problems we solved in Chapter 1 and problems whose answers are immediate.
The goal of this chapter is to develop methods that will allow us to fill in the table
with formulas or at least quantities we know how to compute, and we will give
a completed table at the end of the chapter. We will now justify the answers that
are not question marks and replace some question marks with answers as we cover
relevant material.

If we pass out k distinct objects (say pieces of fruit) to n distinct recipients (say
children), we are saying for each object which recipient it goes to. Thus we are
defining a function from the set of objects to the recipients. We saw the following
theorem in Problem 13.b.
Theorem 3.1.2. There are nk functions from a k-element set to an n-element set.

We proved it in Problem 13.b and in another way in Problem 75. If we pass out
k distinct objects (say pieces of fruit) to n indistinguishable recipients (say identical
paper bags) then we are dividing the objects up into disjoint sets; that is we are
forming a partition of the objects into some number, certainly no more than the
number k of objects, of parts. Later in this chapter (and again in the next chapter)
we shall discuss how to compute the number of partitions of a k-element set into n
parts. This explains the entries in row one of our table.

If we pass out k distinct objects to n recipients so that each gets at most one,
we still determine a function, but the function must be one-to-one. The number of
one-to-one functions from a k-element set to an n element set is the same as the
number of one-to-one functions from the set [k] = {1, 2, . . . , k} to an n-element set.
In Problem 20 we proved the following theorem.
Theorem 3.1.3. If 0 ≤ k ≤ n, then the number of k-element permutations of an n-element
set is

nk = n(n − 1) · · · (n − k + 1) = n!/(n − k)!.

If k > n there are no one-to-one functions from a k element set to an n element, so
we define nk to be zero in this case. Notice that this is what the indicated product
in the middle term of our formula gives us. If we are supposed to distribute k
distinct objects to n identical recipients so that each gets at most one, we cannot do
so if k > n, so there are 0 ways to do so. On the other hand, if k ≤ n, then it doesn’t
matter which recipient gets which object, so there is only one way to do so. This
explains the entries in row two of our table.

If we distribute k distinct objects to n distinct recipients so that each recipient
gets at least one, then we are counting functions again, but this time functions from
a k-element set onto an n-element set. At present we do not know how to compute
the number of such functions, but we will discuss how to do so later in this chapter
and in the next chapter. If we distribute k identical objects to n recipients, we are
again simply partitioning the objects, but the condition that each recipient gets at
least one means that we are partitioning the objects into exactly n blocks. Again,
we will discuss how compute the number of ways of partitioning a set of k objects
into n blocks later in this chapter. This explains the entries in row three of our
table.

If we pass out k distinct objects to n recipients so that each gets exactly one, then
k = n and the function that our distribution gives us is a bĳection. The number of
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bĳections from an n-element set to an n-element set is n! by Theorem 3.1.3. If we
pass out k distinct objects of n identical recipients so that each gets exactly 1, then
in this case it doesn’t matter which recipient gets which object, so the number of
ways to do so is 1 if k = n. If k " n, then the number of such distributions is zero.
This explains the entries in row four of our table.

We now jump to row eight of our table. We saw in Problem 37 that the number
of ways to pass out k identical ping-pong balls to n children is simply the number
of k-element subsets of an n-element set. In Problem 39 we proved the following
theorem.
Theorem 3.1.4. If 0 ≤ k ≤ n, the number of k-element subsets of an n-element set is
given by (

n
k

)
=

nk

k!
=

n!
k!(n − k)!

.

We define (n
k ) to be 0 if k > n, because then there are no k-element subsets of

an n-element set. Notice that this is what the middle term of the formula in the
theorem gives us. This explains the entries of row 8 of our table. For now we jump
over row 9.

In row 10 of our table, if we are passing out k identical objects to n recipients
so that each gets exactly one, it doesn’t matter whether the recipients are identical
or not; there is only one way to pass out the objects if k = n and otherwise it is
impossible to make the distribution, so there are no ways of distributing the objects.
This explains the entries of row 10 of our table. Several other rows of our table can
be computed using the methods of Chapter 1.

3.1.2 Ordered functions

Problem 122. Suppose we wish to place k distinct books onto the shelves
of a bookcase with n shelves. For simplicity, assume for now that all of the
books would fit on any of the shelves. Also, let’s imagine pushing the books
on a shelf as far to the left as we can, so that we are only thinking about how
the books sit relative to each other, not about the exact places where we put
the books. Since the books are distinct, we can think of a the first book, the
second book and so on.

(a) How many places are there where we can place the first book?

(b) When we place the second book, if we decide to place it on the shelf
that already has a book, does it matter if we place it to the left or right
of the book that is already there?

(c) How many places are there where we can place the second book? (h)

(d) Once we have i − 1 books placed, if we want to place book i on a shelf
that already has some books, is sliding it in to the left of all the books
already there different from placing it to the right of all the books
already or between two books already there?

(e) In how many ways may we place the ith book into the bookcase? (h)
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(f) In how many ways may we place all the books?

Problem 123. Suppose we wish to place the books in Problem 122 (satis-
fying the assumptions we made there) so that each shelf gets at least one
book. Now in how many ways may we place the books? (Hint: how can
you make sure that each shelf gets at least one book before you start the
process described in Problem 122?) (h)

The assignment of which books go to which shelves of a bookcase is simply a
function from the books to the shelves. But a function doesn’t determine which
book sits to the left of which others on the shelf, and this information is part of
how the books are arranged on the shelves. In other words, the order in which
the shelves receive their books matters. Our function must thus assign an ordered
list of books to each shelf. We will call such a function an ordered function. More
precisely, an ordered function from a set S to a set T is a function that assigns an
(ordered) list of elements of S to some, but not necessarily all, elements of T in such
a way that each element of S appears on one and only one of the lists.1 (Notice
that although it is not the usual definition of a function from S to T, a function
can be described as an assignment of subsets of S to some, but not necessarily all,
elements of T so that each element of S is in one and only one of these subsets.)
Thus the number of ways to place the books into the bookcase is the entry in the
middle column of row 5 of our table. If in addition we require each shelf to get at
least one book, we are discussing the entry in the middle column of row 6 of our
table. An ordered onto function is one which assigns a list to each element of T. In
Problem 122 you showed that the number of ordered functions from a k-element

set to an n-element set is
k∏

i=1

(n + i − 1). This product occurs frequently enough

that it has a name; it is called the kth rising factorial power of n and is denoted
by nk . It is read as “n to the k rising.” (This notation is due to Don Knuth, who
also suggested the notation for falling factorial powers.) We can summarize with a
theorem that adds two more formulas for the number of ordered functions.

Theorem 3.1.5. The number of ordered functions from a k-element set to an n-element set
is

nk =
k∏

i=1

(n + i − 1) =
(n + i − 1)!

(n − 1)!
= (n + k − 1)k .

Ordered functions explain the entries in the middle column of rows 5 and 6 of
our table of distribution problems.

1The phrase ordered function is not a standard one, because there is as yet no standard name for the
result of an ordered distribution problem.
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3.1.3 Multisets
In the middle column of row 7 of our table, we are asking for the number of ways
to distribute k identical objects (say ping-pong balls) to n distinct recipients (say
children).

Problem 124.• In how many ways may we distribute k identical books on
the shelves of a bookcase with n shelves, assuming that any shelf can hold
all the books? (h)

Problem 125.• A multiset chosen from a set S may be thought of as a subset
with repeated elements allowed. For example the multiset of letters of the
word Mississippi is {i , i , i , i ,m , p , p , s , s , s , s}. To determine a multiset we
must say how many times (including, perhaps, zero) each member of S
appears in the multiset. The number of times an element appears is called
its multiplicity. The size of a multiset chosen from S is the total number
of times any member of S appears. For example, the size of the multiset of
letters of Mississippi is 11. What is the number of multisets of size k that
can be chosen from an n-element set? (h)

Problem 126.⇒ Your answer in the previous problem should be expressible
as a binomial coefficient. Since a binomial coefficient counts subsets, find a
bĳection between subsets of something and multisets chosen from a set S. (h)

Problem 127. How many solutions are there in nonnegative integers to the
equation x1 + x2 + · · ·+ xm = r, where m and r are constants? (h)

Problem 128. In how many ways can we distribute k identical objects to n
distinct recipients so that each recipient gets at least m? (h)

Multisets explain the entry in the middle column of row 7 of our table of
distribution problems.

3.1.4 Compositions of integers

Problem 129.· In how many ways may we put k identical books onto n
shelves if each shelf must get at least one book? (h)



3.1. The idea of a distribution 57

Problem 130.· A composition of the integer k into n parts is a list of n
positive integers that add to k. How many compositions are there of an
integer k into n parts? (h)

Problem 131.⇒ Your answer in Problem 130 can be expressed as a binomial
coefficient. This means it should be possible to interpret a composition as
a subset of some set. Find a bĳection between compositions of k into n
parts and certain subsets of some set. Explain explicitly how to get the
composition from the subset and the subset from the composition. (h)

Problem 132.· Explain the connection between compositions of k into n parts
and the problem of distributing k identical objects to n recipients so that
each recipient gets at least one.

The sequence of problems you just completed should explain the entry in the
middle column of row 9 of our table of distribution problems.

3.1.5 Broken permutations and Lah numbers

Problem 133.⇒ · In how many ways may we stack k distinct books into n
identical boxes so that there is a stack in every box? The hints may suggest
that you can do this problem in more than one way! (h)

We can think of stacking books into identical boxes as partitioning the books
and then ordering the blocks of the partition. This turns out not to be a useful
computational way of visualizing the problem because the number of ways to
order the books in the various stacks depends on the sizes of the stacks and not
just the number of stacks. However this way of thinking actually led to the first
hint in Problem 133. Instead of dividing a set up into nonoverlapping parts, we
may think of dividing a permutation (thought of as a list) of our k objects up into
n ordered blocks. We will say that a set of ordered lists of elements of a set S is a
broken permutation of S if each element of S is in one and only one of these lists.2
The number of broken permutations of a k-element set with n blocks is denoted
by L(k , n). The number L(k , n) is called a Lah Number and, from our solution to
Problem 133, is equal to k!(k−1

n−1 )/n!.
The Lah numbers are the solution to the question “In how many ways may

we distribute k distinct objects to n identical recipients if order matters and each
recipient must get at least one?" Thus they give the entry in row 6 and column 3
of our table. The entry in row 5 and column 3 of our table will be the number of

2The phrase broken permutation is not standard, because there is no standard name for the solution
to this kind of distribution problem.
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broken permutations with less than or equal to n parts. Thus it is a sum of Lah
numbers.

We have seen that ordered functions and broken permutations explain the
entries in rows 5 and 6 of our table.

In the next two sections we will give ways of computing the remaining entries.

3.2 Partitions and Stirling Numbers
We have seen how the number of partitions of a set of k objects into n blocks
corresponds to the distribution of k distinct objects to n identical recipients. While
there is a formula that we shall eventually learn for this number, it requires more
machinery than we now have available. However there is a good method for
computing this number that is similar to Pascal’s equation. Now that we have
studied recurrences in one variable, we will point out that Pascal’s equation is in
fact a recurrence in two variables; that is it lets us compute (n

k ) in terms of values of
(m

i ) in which either m < n or i < k or both. It was the fact that we had such a
recurrence and knew (n

0 ) and (n
n ) that let us create Pascal’s triangle.

3.2.1 Stirling Numbers of the second kind
We use the notation S(k , n) to stand for the number of partitions of a k element
set with n blocks. For historical reasons, S(k , n) is called a Stirling number of the
second kind.

Problem 134. In a partition of the set [k], the number k is either in a block
by itself, or it is not. How does the number of partitions of [k] with n parts
in which k is in a block with other elements of [k] compare to the number of
partitions of [k −1] into n blocks? Find a two variable recurrence for S(n , k),
valid for n and k larger than one. (h)

Problem 135. What is S(k , 1)? What is S(k , k)? Create a table of values of
S(k , n) for k between 1 and 5 and n between 1 and k. This table is sometimes
called Stirling’s Triangle (of the second kind) How would you define
S(k , n) for the nonnegative values of k and n that are not both positive?
Now for what values of k and n is your two variable recurrence valid?

Problem 136. Extend Stirling’s triangle enough to allow you to answer the
following question and answer it. (Don’t fill in the rows all the way; the
work becomes quite tedious if you do. Only fill in what you need to answer
this question.) A caterer is preparing three bag lunches for hikers. The
caterer has nine different sandwiches. In how many ways can these nine
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sandwiches be distributed into three identical lunch bags so that each bag
gets at least one?

Problem 137. The question in Problem 136 naturally suggests a more re-
alistic question; in how many ways may the caterer distribute the nine
sandwich’s into three identical bags so that each bag gets exactly three?
Answer this question. (h)

Problem 138.· What is S(k , k − 1)? (h)

Problem 139.• In how many ways can we partition k items into n blocks so
that we have ki blocks of size i for each i? (Notice that

∑k
i=1 ki = n and∑k

i=1 iki = k.) The sequence k1 , k2 , . . . , kn is called the type vector of the
partition. (h)

Problem 140.+ Describe how to compute S(k , n) in terms of quantities given
by the formula you found in Problem 139.

Problem 141.⇒ Find a recurrence for the Lah numbers L(k , n) similar to the
one in Problem 134. (h)

Problem 142.· (Relevant in Appendix C.) The total number of partitions of
a k-element set is denoted by B(k) and is called the k-th Bell number. Thus
B(1) = 1 and B(2) = 2.

(a) Show, by explicitly exhibiting the partitions, that B(3) = 5.

(b) Find a recurrence that expresses B(k) in terms of B(n) for n < k and
prove your formula correct in as many ways as you can. (h)

(c) Find B(k) for k = 4, 5, 6.
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3.2.2 Stirling Numbers and onto functions

Problem 143.◦ Given a function f from a k-element set K to an n-element
set, we can define a partition of K by putting x and y in the same block of the
partition if and only if f (x) = f (y). How many blocks does the partition
have if f is onto? How is the number of functions from a k-element set onto
an n-element set related to a Stirling number? Be as precise in your answer
as you can. (h)

Problem 144.⇒ How many labeled trees on n vertices have exactly 3 vertices
of degree one? Note that this problem has appeared before in Chapter 2. (h)

Problem 145.• Each function from a k-element set K to an n-element set N
is a function from K onto some subset of N . If J is a subset of N of size j, you
know how to compute the number of functions that map onto J in terms of
Stirling numbers. Suppose you add the number of functions mapping onto
J over all possible subsets J of N . What simple value should this sum equal?
Write the equation this gives you. (h)

Problem 146.◦ In how many ways can the sandwiches of Problem 136 be
placed into three distinct bags so that each bag gets at least one?

Problem 147.◦ In how many ways can the sandwiches of Problem 137 be
placed into distinct bags so that each bag gets exactly three?

Problem 148.• In how many ways may we label the elements of a k-element
set with n distinct labels (numbered 1 through n) so that label i is used ji
times? (If we think of the labels as y1 , y2 , . . . , yn , then we can rephrase this
question as follows. How many functions are there from a k-element set K
to a set N = {y1 , y2 , . . . yn} so that yi is the image of ji elements of K?) This
number is called a multinomial coefficient and denoted by

(
k

j1 , j2 , . . . , jn

)
.

(h)
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Problem 149. Explain how to compute the number of functions from a k-
element set K to an n-element set N by using multinomial coefficients. (h)

Problem 150. Explain how to compute the number of functions from a k-
element set K onto an n-element set N by using multinomial coefficients. (h)

Problem 151.• What do multinomial coefficients have to do with expanding
the kth power of a multinomial x1 + x2 + · · · + xn? This result is called the
multinomial theorem. (h)

3.2.3 Stirling Numbers and bases for polynomials

Problem 152.·
(a) Find a way to express nk in terms of k j for appropriate values j. You

may use Stirling numbers if they help you. (h)

(b) Notice that x j makes sense for a numerical variable x (that could range
over the rational numbers, the real numbers, or even the complex
numbers instead of only the nonnegative integers, as we are implicitly
assuming n does), just as x j does. Find a way to express the power xk

in terms of the polynomials x j for appropriate values of j and explain
why your formula is correct. (h)

You showed in Problem 152 how to get each power of x in terms of the falling
factorial powers x j . Therefore every polynomial in x is expressible in terms of a
sum of numerical multiples of falling factorial powers. Using the language of linear
algebra, we say that the ordinary powers of x and the falling factorial powers of x
each form a basis for the “space” of polynomials, and that the numbers S(k , n) are
“change of basis coefficients.” If you are not familiar with linear algebra, a basis
for the space of polynomials3 is a set of polynomials such that each polynomial,
whether in that set or not, can be expressed in one and only one way as a sum of
numerical multiples of polynomials in the set.

Problem 153.◦ Show that every power of x + 1 is expressible as a sum of
numerical multiples of powers of x. Now show that every power of x (and
thus every polynomial in x) is a sum of numerical multiples (some of which
could be negative) of powers of x + 1. This means that the powers of x + 1
are a basis for the space of polynomials as well. Describe the change of basis

3The space of polynomials is just another name for the set of all polynomials.
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coefficients that we use to express the binomial powers (x + 1)n in terms
of the ordinary x j explicitly. Find the change of basis coefficients we use to
express the ordinary powers xn in terms of the binomial powers (x + 1)k . (h)

Problem 154.⇒ · By multiplication, we can see that every falling factorial poly-
nomial can be expressed as a sum of numerical multiples of powers of x. In
symbols, this means that there are numbers s(k , n) (notice that this s is lower
case, not upper case) such that we may write xk =

∑k
n=0 s(k , n)xn . These

numbers s(k , n) are called Stirling Numbers of the first kind. By thinking
algebraically about what the formula

xk = xk−1(x − k + 1) (3.1)

means, we can find a recurrence for Stirling numbers of the first kind that
gives us another triangular array of numbers called Stirling’s triangle of the
first kind. Explain why Equation (3.1) is true and use it to derive a recurrence
for s(k , n) in terms of s(k − 1, n − 1) and s(k − 1, n). (h)

Problem 155. Write down the rows of Stirling’s triangle of the first kind for
k = 0 to 6.

By definition, the Stirling numbers of the first kind are also change of basis
coefficients. The Stirling numbers of the first and second kind are change of basis
coefficients from the falling factorial powers of x to the ordinary factorial powers,
and vice versa.

Problem 156.⇒ Explain why every rising factorial polynomial xk can be ex-
pressed in terms of the falling factorial polynomials xn . Let b(k , n) stand
for the change of basis coefficients that allow us to express xk in terms of
the falling factorial polynomials xn ; that is, define b(k , n) by the equations

xk =
k∑

n=0

b(k , n)xn .

(a) Find a recurrence for b(k , n). (h)

(b) Find a formula for b(k , n) and prove the correctness of what you say
in as many ways as you can. (h)

(c) Is b(k , n) the same as any of the other families of numbers (binomial
coefficients, Bell numbers, Stirling numbers, Lah numbers, etc.) we
have studied?
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(d) Say as much as you can (but say it precisely) about the change of basis
coefficients for expressing xk in terms of xn . (h)

3.3 Partitions of Integers
We have now completed all our distribution problems except for those in which
both the objects and the recipients are identical. For example, we might be putting
identical apples into identical paper bags. In this case all that matters is how many
bags get one apple (how many recipients get one object), how many get two, how
many get three, and so on. Thus for each bag we have a number, and the multiset of
numbers of apples in the various bags is what determines our distribution of apples
into identical bags. A multiset of positive integers that add to n is called a partition
of n. Thus the partitions of 3 are 1+1+1, 1+2 (which is the same as 2+1) and 3. The
number of partitions of k is denoted by P(k); in computing the partitions of 3 we
showed that P(3) = 3. It is traditional to use Greek letters like λ (the Greek letter
λ is pronounced LAMB duh) to stand for partitons; we might write λ = 1, 1, 1,
γ = 2, 1 and τ = 3 to stand for the three partitions we just described. We also write
λ = 13 as a shorthand for λ = 1, 1, 1, and we write λ ⊣ 3 as a shorthand for “λ is a
partition of three."

Problem 157.◦ Find all partitions of 4 and find all partitions of 5, thereby
computing P(4) and P(5).

3.3.1 The number of partitions of k into n parts
A partition of the integer k into n parts is a multiset of n positive integers that
add to k. We use P(k , n) to denote the number of partitions of k into n parts.
Thus P(k , n) is the number of ways to distribute k identical objects to n identical
recipients so that each gets at least one.

Problem 158.◦ Find P(6, 3) by finding all partitions of 6 into 3 parts. What
does this say about the number of ways to put six identical apples into three
identical bags so that each bag has at least one apple?

3.3.2 Representations of partitions

Problem 159.◦ How many solutions are there in the positive integers to the
equation x1 + x2 + x3 = 7 with x1 ≥ x2 ≥ x3?
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Problem 160. Explain the relationship between partitions of k into n parts
and lists x1 , x2,. . . , xn of positive integers that add to k with x1 ≥ x2 ≥
. . . ≥ xn . Such a representation of a partition is called a decreasing list
representation of the partition.

Problem 161.◦ Describe the relationship between partitions of k and lists or
vectors (x1 , x2 , . . . , xn) such that x1+2x2+. . . kxk = k. Such a representation
of a partition is called a type vector representation of a partition, and it is
typical to leave the trailing zeros out of such a representation; for example
(2, 1) stands for the same partition as (2, 1, 0, 0). What is the decreasing list
representation for this partition, and what number does it partition?

Problem 162. How does the number of partitions of k relate to the number
of partitions of k + 1 whose smallest part is one? (h)

When we write a partition as λ = λ1 , λ2 , . . . , λn , it is customary to write the list
of λis as a decreasing list. When we have a type vector (t1 , t2 , . . . , tm) for a partition,
we write either λ = 1t12t2 · · · mtm or λ = mtm (m − 1)tm−1 · · · 2t21t1 . Henceforth we
will use the second of these. When we write λ = λi1

1 λ
i2
2 · · · λin

n , we will assume that
λi > λi+1.

3.3.3 Ferrers and Young Diagrams and the conjugate of a partition
The decreasing list representation of partitions leads us to a handy way to visualize
partitions. Given a decreasing list (λ1 , λ2 , . . . λn), we draw a figure made up of
rows of dots that has λ1 equally spaced dots in the first row, λ2 equally spaced dots
in the second row, starting out right below the beginning of the first row and so on.
Equivalently, instead of dots, we may use identical squares, drawn so that a square
touches each one to its immediate right or immediately below it along an edge.
See Figure 3.3.1 for examples. The figure we draw with dots is called the Ferrers
diagram of the partition; sometimes the figure with squares is also called a Ferrers
diagram; sometimes it is called a Young diagram. At this stage it is irrelevant
which name we choose and which kind of figure we draw; in more advanced work
the squares are handy because we can put things like numbers or variables into
them. From now on we will use squares and call the diagrams Young diagrams.

Figure 3.3.1: The Ferrers and Young diagrams of the partition (5,3,3,2)
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Problem 163.• Draw the Young diagram of the partition (4,4,3,1,1). Describe
the geometric relationship between the Young diagram of (5,3,3,2) and the
Young diagram of (4,4,3,1,1). (h)

Problem 164.• The partition (λ1 , λ2 , . . . , λn) is called the conjugate of the
partition (γ1 , γ2 , . . . , γm) if we obtain the Young diagram of one from the
Young diagram of the other by flipping one around the line with slope -1
that extends the diagonal of the top left square. See Figure 3.3.2 for an
example.

Figure 3.3.2: The Ferrers diagram the partition (5,3,3,2) and its conjugate.

What is the conjugate of (4,4,3,1,1)? How is the largest part of a partition
related to the number of parts of its conjugate? What does this tell you
about the number of partitions of a positive integer k with largest part m? (h)

Problem 165.⇒ A partition is called self-conjugate if it is equal to its conju-
gate. Find a relationship between the number of self-conjugate partitions of
k and the number of partitions of k into distinct odd parts. (h)

Problem 166. Explain the relationship between the number of partitions
of k into even parts and the number of partitions of k into parts of even
multiplicity, i.e. parts which are each used an even number of times as in
(3,3,3,3,2,2,1,1). (h)

Problem 167.⇒ Show that the number of partitions of k into four parts equals
the number of partitions of 3k into four parts of size at most k − 1 (or 3k − 4
into four parts of size at most k − 2 or 3k − 4 into four parts of size at most
k). (h)
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Problem 168. The idea of conjugation of a partition could be defined with-
out the geometric interpretation of a Young diagram, but it would seem far
less natural without the geometric interpretation. Another idea that seems
much more natural in a geometric context is this. Suppose we have a par-
tition of k into n parts with largest part m. Then the Young diagram of the
partition can fit into a rectangle that is m or more units wide (horizontally)
and n or more units deep. Suppose we place the Young diagram of our
partition in the top left-hand corner of an m′ unit wide and n′ unit deep
rectangle with m′ ≥ m and n′ ≥ n, as in Figure 3.3.3.

Figure 3.3.3: To complement the partition (5, 3, 3, 2) in a 6 by 5 rectangle:
enclose it in the rectangle, rotate, and cut out the original Young diagram.

(a) Why can we interpret the part of the rectangle not occupied by our
Young diagram, rotated in the plane, as the Young diagram of an-
other partition? This is called the complement of our partition in the
rectangle.

(b) What integer is being partitioned by the complement?

(c) What conditions on m′ and n′ guarantee that the complement has the
same number of parts as the original one? (h)

(d) What conditions on m′ and n′ guarantee that the complement has the
same largest part as the original one? (h)

(e) Is it possible for the complement to have both the same number of
parts and the same largest part as the original one?

(f) If we complement a partition in an m′ by n′ box and then complement
that partition in an m′ by n′ box again, do we get the same partition
that we started with?

Problem 169.⇒ Suppose we take a partition of k into n parts with largest part
m, complement it in the smallest rectangle it will fit into, complement the
result in the smallest rectangle it will fit into, and continue the process until
we get the partition 1 of one into one part. What can you say about the
partition with which we started? (h)

Problem 170. Show that P(k , n) is at least 1
n! (

k−1
n−1 ). (h)
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With the binomial coefficients, with Stirling numbers of the second kind, and
with the Lah numbers, we were able to find a recurrence by asking what happens
to our subset, partition, or broken permutation of a set S of numbers if we remove
the largest element of S. Thus it is natural to look for a recurrence to count the
number of partitions of k into n parts by doing something similar. Unfortunately,
since we are counting distributions in which all the objects are identical, there is no
way for us to identify a largest element. However if we think geometrically, we can
ask what we could remove from a Young diagram to get a Young diagram. Two
natural ways to get a partition of a smaller integer from a partition of n would be
to remove the top row of the Young diagram of the partition and to remove the left
column of the Young diagram of the partition. These two operations correspond
to removing the largest part from the partition and to subtracting 1 from each
part of the partition respectively. Even though they are symmetric with respect to
conjugation, they aren’t symmetric with respect to the number of parts. Thus one
might be much more useful than the other for finding a recurrence for the number
of partitions of k into n parts.

Problem 171.⇒ · In this problem we will study the two operations and see
which one seems more useful for getting a recurrence for P(k , n).

(a) How many parts does the remaining partition have when we remove
the largest part (more precisely, we reduce its multiplicity by one) from
a partition of k into n parts? What can you say about the number of
parts of the remaining partition if we remove one from each part? (h)

(b) If we remove the largest part from a partition, what can we say about
the integer that is being partitioned by the remaining parts of the
partition? If we remove one from each part of a partition of k into
n parts, what integer is being partitioned by the remaining parts?
(Another way to describe this is that we remove the first column from
the Young diagram of the partition.) (h)

(c) The last two questions are designed to get you thinking about how we
can get a bĳection between the set of partitions of k into n parts and
some other set of partitions that are partitions of a smaller number.
These questions describe two different strategies for getting that set of
partitions of a smaller number or of smaller numbers. Each strategy
leads to a bĳection between partitions of k into n parts and a set of
partitions of a smaller number or numbers. For each strategy, use
the answers to the last two questions to find and describe this set of
partitions into a smaller number and a bĳection between partitions
of k into n parts and partitions of the smaller integer or integers into
appropriate numbers of parts. (In one case the set of partitions and
bĳection are relatively straightforward to describe and in the other
case not so easy.) (h)

(d) Find a recurrence (which need not have just two terms on the right
hand side) that describes how to compute P(k , n) in terms of the
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number of partitions of smaller integers into a smaller number of
parts. (h)

(e) What is P(k , 1) for a positive integer k?

(f) What is P(k , k) for a positive integer k?

(g) Use your recurrence to compute a table with the values of P(k , n) for
values of k between 1 and 7.

(h) What would you want to fill into row 0 and column 0 of your table in
order to make it consistent with your recurrence. What does this say
P(0, 0) should be? We usually define a sum with no terms in it to be
zero. Is that consistent with the way the recurrence says we should
define P(0, 0)? (h)

It is remarkable that there is no known formula for P(k , n), nor is there one for
P(k). This section was are devoted to developing methods for computing values of
P(n , k) and finding properties of P(n , k) that we can prove even without knowing
a formula. Some future sections will attempt to develop other methods.

We have seen that the number of partitions of k into n parts is equal to the
number of ways to distribute k identical objects to n recipients so that each receives
at least one. If we relax the condition that each recipient receives at least one,
then we see that the number of distributions of k identical objects to n recipients
is

∑n
i=1 P(k , i) because if some recipients receive nothing, it does not matter which

recipients these are. This completes rows 7 and 8 of our table of distribution
problems. The completed table is shown in Table 3.3.4. There are quite a few
theorems that you have proved which are summarized by Table 3.3.4. It would be
worthwhile to try to write them all down!
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The Twentyfold Way: A Table of Distribution Problems
k objects and conditions
on how they are received

n recipients and mathematical
model for distribution

Distinct Identical
1. Distinct
no conditions

nk

functions

∑k
i=1 S(n , i)

set partitions (≤ n parts)

2. Distinct
Each gets at most one

nk

k-element
permutations

1 if k ≤ n;
0 otherwise

3. Distinct
Each gets at least one

S(k , n)n!
onto functions

S(k , n)
set partitions (n parts)

4. Distinct
Each gets exactly one

k! = n!
permutations

1 if k = n;
0 otherwise

5. Distinct,
order matters

(k + n − 1)k

ordered functions

∑n
i=1 L(k , i)

broken permutations
(≤ n parts)

6. Distinct,
order matters
Each gets at least one

(k)n(k − 1)k−n

ordered
onto functions

L(k , n) = (k
n )(k − 1)k−n

broken permutations
(n parts)

7. Identical
no conditions

(n+k−1
k )

multisets

∑n
i=1 P(k , i)

number partitions
(≤ n parts)

8. Identical
Each gets at most one

(n
k )

subsets
1 if k ≤ n;

0 otherwise
9. Identical
Each gets at least one

(k−1
n−1 )

compositions
(n parts)

P(k , n)
number partitions

(n parts)
10. Identical
Each gets exactly one

1 if k = n;
0 otherwise

1 if k = n;
0 otherwise

Table 3.3.4: The number of ways to distribute k objects to n recipients, with restric-
tions on how the objects are received

3.3.4 Partitions into distinct parts
Often Q(k , n) is used to denote the number of partitions of k into distinct parts,
that is, parts that are different from each other.

Problem 172. Show that

Q(k , n) ≤ 1

n!

(
k − 1

n − 1

)
.

(h)
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Problem 173.⇒ Show that the number of partitions of 7 into 3 parts equals
the number of partitions of 10 into three distinct parts. (h)

Problem 174.⇒ · There is a relationship between P(k , n) and Q(m , n) for some
other number m. Find the number m that gives you the nicest possible
relationship. (h)

Problem 175.· Find a recurrence that expresses Q(k , n) as a sum of Q(k −
n ,m) for appropriate values of m. (h)

Problem 176.⇒ ∗ Show that the number of partitions of k into distinct parts
equals the number of partitions of k into odd parts. (h)

Problem 177.⇒ ∗ Euler showed that if k " 3 j2+ j
2 , then the number of partitions

of k into an even number of distinct parts is the same as the number of
partitions of k into an odd number of distinct parts. Prove this, and in the
exceptional case find out how the two numbers relate to each other. (h)

3.4 Supplementary Problems
1. Answer each of the following questions with nk , kn , n!, k!, (n

k ), (
k
n ), nk , kn , nk ,

kn , (n+k−1
k ), (n+k−1

n ), (n−1
k−1 ), (

k−1
n−1 ), or “none of the above".

(a) In how many ways may we pass out k identical pieces of candy to n children?
(b) In how many ways may we pass out k distinct pieces of candy to n children?
(c) In how many ways may we pass out k identical pieces of candy to n children

so that each gets at most one? (Assume k ≤ n.)
(d) In how many ways may we pass out k distinct pieces of candy to n children

so that each gets at most one? (Assume k ≤ n.)
(e) In how many ways may we pass out k distinct pieces of candy to n children

so that each gets at least one? (Assume k ≥ n.)
(f) In how many ways may we pass out k identical pieces of candy to n children

so that each gets at least one? (Assume k ≥ n.)

2. The neighborhood betterment committee has been given r trees to distribute to
s families living along one side of a street.
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(a) In how many ways can they distribute all of them if the trees are distinct, there
are more families than trees, and each family can get at most one?

(b) In how many ways can they distribute all of them if the trees are distinct, any
family can get any number, and a family may plant its trees where it chooses?

(c) In how many ways can they distribute all the trees if the trees are identical,
there are no more trees than families, and any family receives at most one?

(d) In how many ways can they distribute them if the trees are distinct, there are
more trees than families, and each family receives at most one (so there could
be some leftover trees)?

(e) In how many ways can they distribute all the trees if they are identical and
anyone may receive any number of trees?

(f) In how many ways can all the trees be distributed and planted if the trees are
distinct, any family can get any number, and a family must plant its trees in
an evenly spaced row along the road?

(g) Answer the question in Part 3.4.2.f assuming that every family must get a tree.
(h) Answer the question in Part 3.4.2.e assuming that each family must get at least

one tree.

3. In how many ways can n identical chemistry books, r identical mathematics
books, s identical physics books, and t identical astronomy books be arranged on
three bookshelves? (Assume there is no limit on the number of books per shelf.)

4.⇒ One formula for the Lah numbers is

L(k , n) =
(
k
n

)
(k − 1)k−n

Find a proof that explains this product.

5. What is the number of partitions of n into two parts?

6. What is the number of partitions of k into k − 2 parts?

7. Show that the number of partitions of k into n parts of size at most m equals the
number of partitions of mn − k into no more than n parts of size at most m − 1.

8. Show that the number of partitions of k into parts of size at most m is equal to
the number of partitions of of k + m into m parts.

9. You can say something pretty specific about self-conjugate partitions of k into
distinct parts. Figure out what it is and prove it. With that, you should be able to find
a relationship between these partitions and partitions whose parts are consecutive
integers, starting with 1. What is that relationship?

10. What is s(k , 1)?

11. Show that the Stirling numbers of the second kind satisfy the recurrence

S(k , n) =
k∑

i=1

S(k − i , n − 1)

(
n − 1

i − 1

)
.
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12.⇒ Let c(k , n) be the number of ways for k children to hold hands to form n circles,
where one child clasping his or her hands together and holding them out to form a
circle is considered a circle. Find a recurrence for c(k , n). Is the family of numbers
c(k , n) related to any of the other families of numbers we have studied? If so, how?

13.⇒ How many labeled trees on n vertices have exactly four vertices of degree 1?

14.⇒ The degree sequence of a graph is a list of the degrees of the vertices in non-
increasing order. For example the degree sequence of the first graph in Figure 2.3.3
is (4, 3, 2, 2, 1). For a graph with vertices labeled 1 through n, the ordered degree
sequence of the graph is the sequence d1 , d2 , . . . , dn in which di is the degree of
vertex i. For example the ordered degree sequence of the first graph in Figure 2.3.1
is (1, 2, 3, 3, 1, 1, 2, 1).

(a) How many labeled trees are there on n vertices with ordered degree sequence
d1 , d2 , . . . , dn?

(b) How many labeled trees are there on n vertices with with the degree sequence
in which the degree d appears id times?



Chapter 4

Generating Functions

4.1 The Idea of Generating Functions
4.1.1 Visualizing Counting with Pictures
Suppose you are going to choose three pieces of fruit from among apples, pears
and bananas for a snack. We can symbolically represent all your choices as

🍎🍎🍎+🍐🍐🍐+🍌🍌🍌+🍎🍎🍐+🍎🍎🍌+🍎🍐🍐+🍐🍐🍌+🍎🍌🍌+🍐🍌🍌+🍎🍐🍌.

Here we are using a picture of a piece of fruit to stand for taking a piece of that fruit.
Thus 🍎 stands for taking an apple, 🍎🍐 for taking an apple and a pear, and 🍎🍎
for taking two apples. You can think of the plus sign as standing for the “exclusive
or,” that is,🍎+🍌 would stand for “I take an apple or a banana but not both.” To
say “I take both an apple and a banana,” we would write🍎🍌. We can extend the
analogy to mathematical notation by condensing our statement that we take three
pieces of fruit to

🍎3 + 🍐3 +🍌3 +🍎2🍐+🍎2🍌+🍎🍐2 + 🍐2🍌+🍎🍌2 + 🍐🍌2 +🍎🍐🍌.

In this notation 🍎3 stands for taking a multiset of three apples, while 🍎2🍌
stands for taking a multiset of two apples and a banana, and so on. What our
notation is really doing is giving us a convenient way to list all three element
multisets chosen from the set {🍎,🍐,🍌}.1

Suppose now that we plan to choose between one and three apples, between
one and two pears, and between one and two bananas. In a somewhat clumsy way
we could describe our fruit selections as

🍎🍐🍌+🍎2🍐🍌 + · · ·+🍎2🍐2🍌 + · · ·+🍎2🍐2🍌2

+🍎3🍐🍌 + · · ·+🍎3🍐2🍌 + · · ·+🍎3🍐2🍌2. (4.1)

1This approach was inspired by George Pólya’s paper “Picture Writing,” in the December, 1956 issue
of the American Mathematical Monthly, page 689. While we are taking a somewhat more formal approach
than Pólya, it is still completely in the spirit of his work.
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Problem 178.• Using an A in place of the picture of an apple, a P in place
of the picture of a pear, and a B in place of the picture of a banana, write
out the formula similar to Formula (4.1) without any dots for left out terms.
(You may use pictures instead of letters if you prefer, but it gets tedious
quite quickly!) Now expand the product (A + A2 + A3)(P + P2)(B + B2)
and compare the result with your formula.

Problem 179.• Substitute x for all of A, P and B (or for the corresponding
pictures) in the formula you got in Problem 178 and expand the result in
powers of x. Give an interpretation of the coefficient of xn .

If we were to expand the formula

(🍎+🍎2 +🍎3)(🍐+ 🍐2)(🍌+🍌2). (4.2)

we would get Formula (4.1). Thus Formula (4.1) and Formula (4.2) each describe
the number of multisets we can choose from the set {🍎,🍐,🍌} in which🍎 appears
between 1 and three times and 🍐 and 🍌 each appear once or twice. We interpret
Formula (4.1) as describing each individual multiset we can choose, and we inter-
pret Formula (4.2) as saying that we first decide how many apples to take, and then
decide how many pears to take, and then decide how many bananas to take. At
this stage it might seem a bit magical that doing ordinary algebra with the second
formula yields the first, but in fact we could define addition and multiplication
with these pictures more formally so we could explain in detail why things work
out. However since the pictures are for motivation, and are actually difficult to
write out on paper, it doesn’t make much sense to work out these details. We will
see an explanation in another context later on.

4.1.2 Picture functions
As you’ve seen, in our descriptions of ways of choosing fruits, we’ve treated the
pictures of the fruit as if they are variables. You’ve also likely noticed that it is
much easier to do algebraic manipulations with letters rather than pictures, simply
because it is time consuming to draw the same picture over and over again, while
we are used to writing letters quickly. In the theory of generating functions,
we associate variables or polynomials or even power series with members of a set.
There is no standard language describing how we associate variables with members
of a set, so we shall invent2 some. By a picture of a member of a set we will mean
a variable, or perhaps a product of powers of variables (or even a sum of products
of powers of variables). A function that assigns a picture P(s) to each member s
of a set S will be called a picture function . The picture enumerator for a picture
function P defined on a set S will be

EP(S) =
∑
s:s∈S

P(s).

2We are really adapting language introduced by George Pólya.
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We choose this language because the picture enumerator lists, or enumerates,
all the elements of S according to their pictures. Thus Formula (4.1) is the picture
enumerator the set of all multisets of fruit with between one and three apples, one
and two pears, and one and two bananas.

Problem 180.◦ How would you write down a polynomial in the variable A
that says you should take between zero and three apples?

Problem 181.• How would you write down a picture enumerator that says
we take between zero and three apples, between zero and three pears, and
between zero and three bananas?

Problem 182.· (Used in Chapter 6.) Notice that when we used A2 to stand for
taking two apples, and P3 to stand for taking three pears, then we used the
product A2P3 to stand for taking two apples and three pears. Thus we have
chosen the picture of the ordered pair (2 apples, 3 pears) to be the product
of the pictures of a multiset of two apples and a multiset of three pears.
Show that if S1 and S2 are sets with picture functions P1 and P2 defined
on them, and if we define the picture of an ordered pair (x1 , x2) ∈ S1 × S2

to be P((x1 , x2)) = P1(x1)P2(x2), then the picture enumerator of P on the
set S1 × S2 is EP1(S1)EP2(S2). We call this the product principle for picture
enumerators.

4.1.3 Generating functions

Problem 183.• Suppose you are going to choose a snack of between zero
and three apples, between zero and three pears, and between zero and
three bananas. Write down a polynomial in one variable x such that the
coefficient of xn is the number of ways to choose a snack with n pieces of
fruit. (h)

Problem 184.◦ Suppose an apple costs 20 cents, a banana costs 25 cents,
and a pear costs 30 cents. What should you substitute for A, P, and B in
Problem 181 in order to get a polynomial in which the coefficient of xn is
the number of ways to choose a selection of fruit that costs n cents? (h)
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Problem 185.• Suppose an apple has 40 calories, a pear has 60 calories, and
a banana has 80 calories. What should you substitute for A, P, and B in
Problem 181 in order to get a polynomial in which the coefficient of xn is
the number of ways to choose a selection of fruit with a total of n calories?

Problem 186.• We are going to choose a subset of the set [n] = {1, 2, . . . , n}.
Suppose we use x1 to be the picture of choosing 1 to be in our subset. What
is the picture enumerator for either choosing 1 or not choosing 1? Suppose
that for each i between 1 and n, we use xi to be the picture of choosing i
to be in our subset. What is the picture enumerator for either choosing i or
not choosing i to be in our subset? What is the picture enumerator for all
possible choices of subsets of [n]? What should we substitute for xi in order
to get a polynomial in x such that the coefficient of xk is the number of ways
to choose a k-element subset of n? What theorem have we just reproved (a
special case of)? (h)

In Problem 186 we see that we can think of the process of expanding the polyno-
mial (1+x)n as a way of “generating” the binomial coefficients (n

k ) as the coefficients
of xk in the expansion of (1 + x)n . For this reason, we say that (1 + x)n is the “gen-
erating function” for the binomial coefficients (n

k ). More generally, the generating
function for a sequence ai , defined for i with 0 ≤ i ≤ n is the expression

∑n
i=0 ai xi ,

and the generating function for the sequence ai with i ≥ 0 is the expression∑∞
i=0 ai xi . This last expression is an example of a power series. In calculus it is

important to think about whether a power series converges in order to determine
whether or not it represents a function. In a nice twist of language, even though we
use the phrase generating function as the name of a power series in combinatorics,
we don’t require the power series to actually represent a function in the usual sense,
and so we don’t have to worry about convergence.3 Instead we think of a power
series as a convenient way of representing the terms of a sequence of numbers of
interest to us. The only justification for saying that such a representation is con-
venient is because of the way algebraic properties of power series capture some of
the important properties of some sequences that are of combinatorial importance.
The remainder of this chapter is devoted to giving examples of how the algebra of
power series reflects combinatorial ideas.

Because we choose to think of power series as strings of symbols that we ma-
nipulate by using the ordinary rules of algebra and we choose to ignore issues
of convergence, we have to avoid manipulating power series in a way that would
require us to add infinitely many real numbers. For example, we cannot make the
substitution of y +1 for x in the power series

∑∞
i=0 xi , because in order to interpret∑∞

i=0(y + 1)i as a power series we would have to apply the binomial theorem to
each of the (y + 1)i terms, and then collect like terms, giving us infinitely many

3In the evolution of our current mathematical terminology, the word function evolved through
several meanings, starting with very imprecise meanings and ending with our current rather precise
meaning. The terminology “generating function” may be thought of as an example of one of the earlier
usages of the term function.
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ones added together as the coefficient of y0, and in fact infinitely many numbers
added together for the coefficient of any yi . (On the other hand, it would be fine to
substitute y + y2 for x. Can you see why?)

4.1.4 Power series
For now, most of our uses of power series will involve just simple algebra. Since
we use power series in a different way in combinatorics than we do in calculus, we
should review a bit of the algebra of power series.

Problem 187.• In the polynomial (a0 + a1x + a2x2)(b0 + b1x + b2x2 + b3x3),
what is the coefficient of x2? What is the coefficient of x4?

Problem 188.• In Problem 187 why is there a b0 and a b1 in your expression
for the coefficient of x2 but there is not a b0 or a b1 in your expression for
the coefficient of x4? What is the coefficient of x4 in

(a0 + a1x + a2x2 + a3x3 + a4x4)(b0 + b1x + b2x2 + b3x3 + b4x4)?

Express this coefficient in the form

4∑
i=0

something,

where the something is an expression you need to figure out. Now suppose
that a3 = 0, a4 = 0 and b4 = 0. To what is your expression equal after
you substitute these values? In particular, what does this have to do with
Problem 187? (h)

Problem 189.• The point of the Problems 187 and Problem 188 is that so long
as we are willing to assume ai = 0 for i > n and b j = 0 for j > m, then there
is a very nice formula for the coefficient of xk in the product

(
n∑

i=0

ai xi

) -.
/

m∑
j=0

b j x j01
2
.

Write down this formula explicitly. (h)

Problem 190.• Assuming that the rules you use to do arithmetic with poly-
nomials apply to power series, write down a formula for the coefficient of
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xk in the product ( ∞∑
i=0

ai xi

) -.
/

∞∑
j=0

b j x j01
2

.

(h)

We use the expression you obtained in Problem 190 to define the product of
power series. That is, we define the product

( ∞∑
i=0

ai xi

) -.
/

∞∑
j=0

b j x j01
2

to be the power series
∑∞

k=0 ck xk , where ck is the expression you found in Prob-
lem 190. Since you derived this expression by using the usual rules of algebra for
polynomials, it should not be surprising that the product of power series satisfies
these rules.4

4.1.5 Product principle for generating functions
Each time that we converted a picture function to a generating function by substi-
tuting x or some power of x for each picture, the coefficient of x had a meaning
that was significant to us. For example, with the picture enumerator for selecting
between zero and three each of apples, pears, and bananas, when we substituted
x for each of our pictures, the exponent i in the power xi is the number of pieces
of fruit in the fruit selection that led us to xi . After we simplify our product by
collecting together all like powers of x, the coefficient of xi is the number of fruit
selections that use i pieces of fruit. In the same way, if we substitute xc for a pic-
ture, where c is the number of calories in that particular kind of fruit, then the i in
an xi term in our generating function stands for the number of calories in a fruit
selection that gave rise to xi , and the coefficient of xi in our generating function
is the number of fruit selections with i calories. The product principle of picture
enumerators translates directly into a product principle for generating functions.

Problem 191.• Suppose that we have two sets S1 and S2. Let v1 (v stands
for value) be a function from S1 to the nonnegative integers and let v2 be a
function from S2 to the nonnegative integers. Define a new function v on
the set S1×S2 by v(x1 , x2) = v1(x1)+v2(x2). Suppose further that

∑∞
i=0 ai xi

is the generating function for the number of elements x1 of S1 of value i, that
is with v1(x1) = i. Suppose also that

∑∞
j=0 b j x j is the generating function

for the number of elements x2 of S2 of value j, that is with v2(x2) = j. Prove

4Technically we should explicitly state these rules and prove that they are all valid for power series
multiplication, but it seems like overkill at this point to do so!
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that the coefficient of xk in
( ∞∑

i=0

ai xi

) -.
/

∞∑
j=0

b j x j01
2

is the number of ordered pairs (x1 , x2) in S1 × S2 with total value k, that is
with v1(x1)+v2(x2) = k. This is called the product principle for generating
functions. (h)

Problem 191 may be extended by mathematical induction to prove our next
theorem.

Theorem 4.1.1. If S1 , S2 , . . . , Sn are sets with a value function vi from Si to the nonneg-
ative integers for each i and fi(x) is the generating function for the number of elements of
Si of each possible value, then the generating function for the number of n-tuples of each
possible value is

∏n
i=1 fi(x).

4.1.6 The extended binomial theorem and multisets

Problem 192.• Suppose once again that i is an integer between 1 and n.

(a) What is the generating function in which the coefficient of xk is 1? This
series is an example of what is called an infinite geometric series. In
the next part of this problem, it will be useful to interpret the coefficient
one as the number of multisets of size k chosen from the singleton set
{i}. Namely, there is only one way to choose a multiset of size k from
{i}: choose i exactly k times.

(b) Express the generating function in which the coefficient of xk is the
number of multisets chosen from [n] as a power of a power series.
What does Problem 125 (in which your answer could be expressed
as a binomial coefficient) tell you about what this generating function
equals? (h)

Problem 193.◦ What is the product (1 − x)
∑n

k=0 xk? What is the product

(1 − x)
∞∑

k=0

xk?

Problem 194. Express the generating function for the number of multisets
of size k chosen from [n] (where n is fixed but k can be any nonnegative
integer) as a 1 over something relatively simple.
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Problem 195.• Find a formula for (1 + x)−n as a power series whose coeffi-
cients involve binomial coefficients. What does this formula tell you about
how we should define (−n

k ) when n is positive? (h)

Problem 196. If you define (−n
k ) in the way you described in Problem 195,

you can write down a version of the binomial theorem for (x + y)n that is
valid for both nonnegative and negative values of n. Do so. This is called
the extended binomial theorem. Write down a special case with n negative,
like n = −3, to see an interesting surprise that suggests why we do not use
this formula later on.

Problem 197. Write down the generating function for the number of ways
to distribute identical pieces of candy to three children so that no child
gets more than 4 pieces. Write this generating function as a quotient of
polynomials. Using both the extended binomial theorem and the original
binomial theorem, find out in how many ways we can pass out exactly ten
pieces. (h)

Problem 198.• What is the generating function for the number of multisets
chosen from an n-element set so that each element appears at least j times
and less than m times? Write this generating function as a quotient of
polynomials, then as a product of a polynomial and a power series. (h)

Problem 199.⇒ Recall that a tree is determined by its edge set. Suppose you
have a tree on n vertices, say with vertex set [n]. We can use xi as the picture
of vertex i and xi x j as the picture of the edge xi x j . Then one possible picture
of the tree T is the product P(T) =

∏
{i , j}:i and j are adjacent xi x j .

(a) Explain why the picture of a tree is also
∏n

i=1 x (i)
i .

(b) Write down the picture enumerators for trees on two, three, and four
vertices. Factor them as completely as possible.

(c) Explain why x1x2 · · · xn is a factor of the picture of a tree on n vertices.

(d) Write down the picture of a tree on five vertices with one vertex of
degree four, say vertex i. If a tree on five vertices has a vertex of degree
three, what are the possible degrees of the other vertices. What can
you say about the picture of a tree with a vertex of degree three? If
a tree on five vertices has no vertices of degree three or four, how
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many vertices of degree two does it have? What can you say about its
picture? Write down the picture enumerator for trees on five vertices.

(e) Find a (relatively) simple polynomial expression for the picture enu-
merator

∑
T : T is a tree on [n] P(T). Prove it is correct. (h)

(f) The enumerator for trees by degree sequence is the sum over all trees
of xd1 xd2 · · · xdn , where di is the degree of vertex i. What is the enu-
merator by degree sequence for trees on the vertex set [n]?

4.2 Generating functions for integer partitions

Problem 200.• If we have five identical pennies, five identical nickels, five
identical dimes, and five identical quarters, give the picture enumerator
for the combinations of coins we can form and convert it to a generating
function for the number of ways to make k cents with the coins we have. Do
the same thing assuming we have an unlimited supply of pennies, nickels,
dimes, and quarters. (h)

Problem 201.• Recall that a partition of an integer k is a multiset of numbers
that adds to k. In Problem 200 we found the generating function for the
number of partitions of an integer into parts of size 1, 5, 10, and 25. When
working with generating functions for partitions, it is becoming standard to
use q rather than x as the variable in the generating function. Write your
answers in this notation.a

(a) Give the generating function for the number partitions of an integer
into parts of size one through ten. (h)

(b) Give the generating function for the number of partitions of an integer
k into parts of size at most m, where m is fixed but k may vary. Notice
this is the generating function for partitions whose Young diagram
fits into the space between the line x = 0 and the line x = m in a
coordinate plane. (We assume the boxes in the Young diagram are
one unit by one unit.) (h)

aThe reason for this change in the notation relates to the subject of finite fields in abstract
algebra, where q is the standard notation for the size of a finite field. While we will make no
use of this connection, it will be easier for you to read more advanced work if you get used to
the different notation.
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Problem 202.• In Problem 201.b you gave the generating function for the
number of partitions of an integer into parts of size at most m. Explain
why this is also the generating function for partitions of an integer into at
most m parts. Notice that this is the generating function for the number of
partitions whose Young diagram fits into the space between the line y = 0
and the line y = m. (h)

Problem 203.• When studying partitions of integers, it is inconvenient to
restrict ourselves to partitions with at most m parts or partitions with max-
imum part size m.

(a) Give the generating function for the number of partitions of an integer
into parts of any size. Don’t forget to use q rather than x as your
variable. (h)

(b) Find the coefficient of q4 in this generating function. (h)

(c) find the coefficient of q5 in this generating function.

(d) This generating function involves an infinite product. Describe the
process you would use to expand this product into as many terms of
a power series as you choose. (h)

(e) Rewrite any power series that appear in your product as quotients of
polynomials or as integers divided by polynomials.

Problem 204.⇒ In Problem 203, we multiplied together infinitely many power
series. Here are two notations for infinite products that look rather similar:

∞∏
i=1

1 + x + x2 + · · ·+ xi and
∞∏

i=1

1 + xi + x2i + · · ·+ xi2 .

However, one makes sense and one doesn’t. Figure out which one makes
sense and explain why it makes sense and the other one doesn’t. If we want
a product of the form

∞∏
i=1

1 + pi(x),

where each pi(x) is a nonzero polynomial in x to make sense, describe a
relatively simple assumption about the polynomials pi(x) that will make the
product make sense. If we assumed the terms pi(x) were nonzero power
series, is there a relatively simple assumption we could make about them
in order to make the product make sense? (Describe such a condition or
explain why you think there couldn’t be one.) (h)
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Problem 205.• What is the generating function (using q for the variable) for
the number of partitions of an integer in which each part is even? (h)

Problem 206.• What is the generating function (using q as the variable) for
the number of partitions of an integer into distinct parts, that is, in which
each part is used at most once? (h)

Problem 207.• Use generating functions to explain why the number of par-
titions of an integer in which each part is used an even number of times
equals the generating function for the number of partitions of an integer in
which each part is even. (h)

Problem 208. Use the fact that

1 − q2i

1 − qi = 1 + qi

and the generating function for the number of partitions of an integer into
distinct parts to show how the number of partitions of an integer k into
distinct parts is related to the number of partitions of an integer k into odd
parts. (h)

Problem 209. Write down the generating function for the number of ways
to partition an integer into parts of size no more than m, each used an
odd number of times. Write down the generating function for the number
of partitions of an integer into parts of size no more than m, each used
an even number of times. Use these two generating functions to get a
relationship between the two sequences for which you wrote down the
generating functions. (h)

Problem 210.⇒ In Problem 201.b and Problem 202 you gave the generating
functions for, respectively, the number of partitions of k into parts the largest
of which is at most m and for the number of partitions of k into at most m
parts. In this problem we will give the generating function for the number
of partitions of k into at most n parts, the largest of which is at most m.
That is we will analyze

∑∞
i=0 ak qk where ak is the number of partitions of k

into at most n parts, the largest of which is at most m. Geometrically, it is
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the generating function for partitions whose Young diagram fits into an m
by n rectangle, as in Problem 167. This generating function has significant
analogs to the binomial coefficient (m+n

n ), and so it is denoted by [m+n
n ]q . It

is called a q-binomial coefficient.

(a) Compute [42 ]q = [2+2
2 ]q . (h)

(b) Find explicit formulas for [n1 ]q and [ n
n−1 ]q . (h)

(c) How are [m+n
n ]q and [m+n

n ]q related? Prove it. (Note this is the same as
asking how [rs ]q and [ r

r−s ]q are related.) (h)

(d) So far the analogy to (m+n
n ) is rather thin! If we had a recurrence

like the Pascal recurrence, that would demonstrate a real analogy. Is
[m+n

n ]q = [m+n−1
n−1 ]q + [m+n−1

n ]q?

(e) Recall the two operations we studied in Problem 171.

(i) The largest part of a partition counted by [m+n
n ]q is either m or

is less than or equal to m − 1. In the second case, the partition
fits into a rectangle that is at most m − 1 units wide and at most
n units deep. What is the generating function for partitions of
this type? In the first case, what kind of rectangle does the
partition we get by removing the largest part sit in? What is the
generating function for partitions that sit in this kind of rectangle?
What is the generating function for partitions that sit in this kind
of rectangle after we remove a largest part of size m? What
recurrence relation does this give you?

(ii) What recurrence do you get from the other operation we studied
in Problem 171?

(iii) It is quite likely that the two recurrences you got are different.
One would expect that they might give different values for [m+n

n ]q .
Can you resolve this potential conflict? (h)

(f) Define [n]q to be 1 + q + · · · + qn−1 for n > 0 and [0]q = 1. We read
this simply as n-sub-q. Define [n]!q to be [n]q [n−1]q · · · [3]q [2]q [1]q . We
read this as n cue-torial, and refer to it as a q-ary factorial. Show that

[
m + n

n

]
q
=

[m + n]!q
[m]!q [n]!q

.

(h)

(g) Now think of q as a variable that we will let approach 1. Find an
explicit formula for

(i)
q→1

[n]q .
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(ii)
q→1

[n]!q .

(iii)
q→1

[
m + n

n

]
q
.

Why is the limit in Part iii equal to the number of partitions (of any
number) with at most n parts all of size most m? Can you explain
bĳectively why this quantity equals the formula you got? (h)

(h)∗ What happens to [m+n
n ]q if we let q approach −1? (h)

4.3 Generating Functions and Recurrence Relations
Recall that a recurrence relation for a sequence an expresses an in terms of values
ai for i < n. For example, the equation ai = 3ai−1+2i is a first order linear constant
coefficient recurrence.

4.3.1 How generating functions are relevant
Algebraic manipulations with generating functions can sometimes reveal the solu-
tions to a recurrence relation.

Problem 211.• Suppose that ai = 3ai−1 + 3i .

(a) Multiply both sides by xi and sum both the left hand side and right
hand side from i = 1 to infinity. In the left-hand side use the fact that

∞∑
i=1

ai xi = (
∞∑

i=0

xi) − a0

and in the right hand side, use the fact that
∞∑

i=1

ai−1xi = x
∞∑

i=1

ai xi−1 = x
∞∑

j=0

a j x j = x
∞∑

i=0

ai xi

(where we substituted j for i−1 to see explicitly how to change the lim-
its of summation, a surprisingly useful trick) to rewrite the equation
in terms of the power series

∑∞
i=0 ai xi . Solve the resulting equation

for the power series
∑∞

i=0 ai xi . You can save a lot of writing by using
a variable like y to stand for the power series.

(b) Use the previous part to get a formula for ai in terms of a0.

(c) Now suppose that ai = 3ai−1 + 2i . Repeat the previous two steps for
this recurrence relation. (There is a way to do this part using what you
already know. Later on we shall introduce yet another way to deal
with the kind of generating function that arises here.) (h)
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Problem 212.◦ Suppose we deposit $5000 in a savings certificate that pays
ten percent interest and also participate in a program to add $1000 to the
certificate at the end of each year (from the end of the first year on) that
follows (also subject to interest.) Assuming we make the $5000 deposit at
the end of year 0, and letting ai be the amount of money in the account at
the end of year i, write a recurrence for the amount of money the certificate
is worth at the end of year n. Solve this recurrence. How much money do
we have in the account (after our year-end deposit) at the end of ten years?
At the end of 20 years?

4.3.2 Fibonacci numbers
The sequence of problems that follows (culminating in Problem 222) describes a
number of hypotheses we might make about a fictional population of rabbits. We
use the example of a rabbit population for historic reasons; our goal is a classical
sequence of numbers called Fibonacci numbers. When Fibonacci5 introduced them,
he did so with a fictional population of rabbits.

4.3.3 Second order linear recurrence relations

Problem 213.• Suppose we start (at the end of month 0) with 10 pairs of
baby rabbits, and that after baby rabbits mature for one month they begin to
reproduce, with each pair producing two new pairs at the end of each month
afterwards. Suppose further that over the time we observe the rabbits, none
die. Let an be the number of rabbits we have at the end of month n. Show
that an = an−1+2an−2. This is an example of a second order linear recurrence
with constant coefficients. Using a method similar to that of Problem 211,
show that ∞∑

i=0

ai xi =
10

1 − x − 2x2
.

This gives us the generating function for the sequence ai giving the pop-
ulation in month i; shortly we shall see a method for converting this to a
solution to the recurrence.

Problem 214.• In Fibonacci’s original problem, each pair of mature rabbits
produces one new pair at the end of each month, but otherwise the situation
is the same as in Problem 213. Assuming that we start with one pair of baby
rabbits (at the end of month 0), find the generating function for the number
of pairs of rabbits we have at the end on n months. (h)

5Apparently Leanardo de Pisa was given the name Fibonacci posthumously. It is a shortening of
“son of Bonacci” in Italian.
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Problem 215.⇒ Find the generating function for the solutions to the recur-
rence

ai = 5ai−1 − 6ai−2 + 2i .

The recurrence relations we have seen in this section are called second order
because they specify ai in terms of ai−1 and ai−2, they are called linear because ai−1
and ai−2 each appear to the first power, and they are called constant coefficient
recurrences because the coefficients in front of ai−1 and ai−2 are constants.

4.3.4 Partial fractions
The generating functions you found in the previous section all can be expressed
in terms of the reciprocal of a quadratic polynomial. However without a power
series representation, the generating function doesn’t tell us what the sequence
is. It turns out that whenever you can factor a polynomial into linear factors (and
over the complex numbers such a factorization always exists) you can use that
factorization to express the reciprocal in terms of power series.

Problem 216.• Express 1
x−3 + 2

x−2 as a single fraction.

Problem 217.◦ In Problem 216 you see that when we added numerical multi-
ples of the reciprocals of first degree polynomials we got a fraction in which
the denominator is a quadratic polynomial. This will always happen unless
the two denominators are multiples of each other, because their least com-
mon multiple will simply be their product, a quadratic polynomial. This
leads us to ask whether a fraction whose denominator is a quadratic poly-
nomial can always be expressed as a sum of fractions whose denominators
are first degree polynomials. Find numbers c and d so that

5x + 1

(x − 3)(x + 5)
=

c
x − 3

+
d

x + 5
.

(h)

Problem 218.• In Problem 217 you may have simply guessed at values of c
and d, or you may have solved a system of equations in the two unknowns
c and d. Given constants a, b, r1, and r2 (with r1 " r2), write down a system
of equations we can solve for c and d to write

ax + b
(x − r1)(x − r2)

=
c

x − r1
+

d
x − r2

.

(h)
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Writing down the equations in Problem 218 and solving them is called the
method of partial fractions. This method will let you find power series expansions
for generating functions of the type you found in Problems 213 to Problem 215.
However you have to be able to factor the quadratic polynomials that are in the
denominators of your generating functions.

Problem 219.• Use the method of partial fractions to convert the generating
function of Problem 213 into the form

c
x − r1

+
d

x − r2
.

Use this to find a formula for an .

Problem 220.• Use the quadratic formula to find the solutions to x2+x−1 =
0, and use that information to factor x2 + x − 1.

Problem 221.• Use the factors you found in Problem 220 to write

1

x2 + x − 1

in the form
c

x − r1
+

d
x − r2

.

(h)

Problem 222.•

(a) Use the partial fractions decomposition you found in Problem 220 to
write the generating function you found in Problem 214 in the form

∞∑
n=0

an xi

and use this to give an explicit formula for an . (h)

(b) When we have a0 = 1 and a1 = 1, i.e. when we start with one pair
of baby rabbits, the numbers an are called Fibonacci Numbers. Use
either the recurrence or your final formula to find a2 through a8. Are
you amazed that your general formula produces integers, or for that
matter produces rational numbers? Why does the recurrence equation
tell you that the Fibonacci numbers are all integers?
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(c) Explain why there is a real number b such that, for large values of n,
the value of the nth Fibonacci number is almost exactly (but not quite)
some constant times bn . (Find b and the constant.)

(d) Find an algebraic explanation (not using the recurrence equation) of
what happens to make the square roots of five go away. (h)

(e) As a challenge (which the author has not yet done), see if you can find
a way to show algebraically (not using the recurrence relation, but
rather the formula you get by removing the square roots of five) that
the formula for the Fibonacci numbers yields integers.

Problem 223. Solve the recurrence an = 4an−1 − 4an−2.

4.3.5 Catalan Numbers

Problem 224.⇒

(a) Using either lattice paths or diagonal lattice paths, explain why the
Catalan Number cn satisfies the recurrence

Cn =
n−1∑
i=1

Ci−1Cn−i .

(h)

(b) Show that if we use y to stand for the power series
∑∞

n=0 cn xn , then
we can find y by solving a quadratic equation. Find y. (h)

(c) Taylor’s theorem from calculus tells us that the extended binomial
theorem

(1 + x)r =
∞∑

i=0

(
r
i

)
xi

holds for any number real number r, where (r
i ) is defined to be

ri

i!
=

r(r − 1) · · · (r − i + 1)

i!
.

Use this and your solution for y (note that of the two possible values
for y that you get from the quadratic formula, only one gives an actual
power series) to get a formula for the Catalan numbers. (h)
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4.4 Supplementary Problems
1.⇒ ∗ What is the generating function for the number of ways to pass out k pieces of
candy from an unlimited supply of identical candy to n children (where n is fixed)
so that each child gets between three and six pieces of candy (inclusive)? Use the
fact that

(1 + x + x2 + x3)(1 − x) = 1 − x4

to find a formula for the number of ways to pass out the candy.

2.◦
(a) In paying off a mortgage loan with initial amount A, annual interest rate p%

on a monthly basis with a monthly payment of m, what recurrence describes
the amount owed after n months of payments in terms of the amount owed
after n − 1 months? Some technical details: You make the first payment after
one month. The amount of interest included in your monthly payment is
.01p/12. This interest rate is applied to the amount you owed immediately
after making your last monthly payment.

(b) Find a formula for the amount owed after n months.
(c) Find a formula for the number of months needed to bring the amount owed

to zero. Another technical point: If you were to make the standard monthly
payment m in the last month, you might actually end up owing a negative
amount of money. Therefore it is ok if the result of your formula for the
number of months needed gives a non-integer number of months. The bank
would just round up to the next integer and adjust your payment so your
balance comes out to zero.

(d) What should the monthly payment be to pay off the loan over a period of 30
years?

3.⇒ We have said that for nonnegative i and positive n we want to define (−n
i ) to be

(n+i−1
i ). If we want the Pascal recurrence to be valid, how should we define (−n

−i )
when n and i are both positive?

4.⇒ Find a recurrence relation for the number of ways to divide a convex n-gon into
triangles by means of non-intersecting diagonals. How do these numbers relate to
the Catalan numbers?

5.⇒ How does
∑n

k=0 (
n−k

k ) relate to the Fibonacci Numbers?

6. Let m and n be fixed. Express the generating function for the number of k-
element multisets of an n-element set such that no element appears more than m
times as a quotient of two polynomials. Use this expression to get a formula for the
number of k-element multisets of an n-element set such that no element appears
more than m times.

7. One natural but oversimplified model for the growth of a tree is that all new
wood grows from the previous year’s growth and is proportional to it in amount.
To be more precise, assume that the (total) length of the new growth in a given
year is the constant c times the (total) length of new growth in the previous year.
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Write down a recurrence for the total length an of all the branches of the tree at
the end of growing season n. Find the general solution to your recurrence relation.
Assume that we begin with a one meter cutting of new wood (from the previous
year) which branches out and grows a total of two meters of new wood in the first
year. What will the total length of all the branches of the tree be at the end of n
years?

8.⇒ (Relevant to Appendix C) We have some chairs which we are going to paint with
red, white, blue, green, yellow and purple paint. Suppose that we may paint any
number of chairs red or white, that we may paint at most one chair blue, at most
three chairs green, only an even number of chairs yellow, and only a multiple of
four chairs purple. In how many ways may we paint n chairs?

9. What is the generating function for the number of partitions of an integer in
which each part is used at most m times? Why is this also the generating function
for partitions in which consecutive parts (in a decreasing list representation) differ
by at most m and the smallest part is also at most m?
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Chapter 5

The Principle of Inclusion and
Exclusion

5.1 The size of a union of sets
One of our very first counting principles was the sum principle which says that
the size of a union of disjoint sets is the sum of their sizes. Computing the size
of overlapping sets requires, quite naturally, information about how they overlap.
Taking such information into account will allow us to develop a powerful extension
of the sum principle known as the “principle of inclusion and exclusion.”

5.1.1 Unions of two or three sets

Problem 225.◦ In a biology lab study of the effects of basic fertilizer ingredi-
ents on plants, 16 plants are treated with potash, 16 plants are treated with
phosphate, and among these plants, eight are treated with both phosphate
and potash. No other treatments are used. How many plants receive at least
one treatment? If 32 plants are studied, how many receive no treatment?

Problem 226.+ Give a formula for the size of the union A ∪ B of two sets A
in terms of the sizes |A| of A, |B | of B, and |A ∩ B | of A ∩ B. If A and B
are subsets of some “universal” set U, express the size of the complement
U − (A ∪ B) in terms of the sizes |U | of U, |A| of A, |B | of B, and |A ∩ B | of
A ∩ B. (h)

Problem 227.◦ In Problem 225, there were just two fertilizers used to treat
the sample plants. Now suppose there are three fertilizer treatments, and
15 plants are treated with nitrates, 16 with potash, 16 with phosphate, 7

93
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with nitrate and potash, 9 with nitrate and phosphate, 8 with potash and
phosphate and 4 with all three. Now how many plants have been treated?
If 32 plants were studied, how many received no treatment at all?

Problem 228.• Give a formula for the size of A ∪ B ∪ C in terms of the sizes
of A, B, C and the intersections of these sets. (h)

5.1.2 Unions of an arbitrary number of sets

Problem 229.• Conjecture a formula for the size of a union of sets

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai

in terms of the sizes of the sets Ai and their intersections.

The difficulty of generalizing Problem 228 to Problem 229 is not likely to be one
of being able to see what the right conjecture is, but of finding a good notation to
express your conjecture. In fact, it would be easier for some people to express the
conjecture in words than to express it in a notation. Here is some notation that will
make your task easier. Let us define ⋂

i:i∈I

Ai

to mean the intersection over all elements i in the set I of Ai . Thus⋂
i:i∈{1,3,4,6}

= A1 ∩ A3 ∩ A4 ∩ A6. (5.1)

This kind of notation, consisting of an operator with a description underneath
of the values of a dummy variable of interest to us, can be extended in many ways.
For example ∑

I:I⊆{1,2,3,4}, |I |=2

| ∩i∈I Ai | = |A1 ∩ A2 | + |A1 ∩ A3 | + |A1 ∩ A4 |

+ |A2 ∩ A3 | + |A2 ∩ A4 | + |A3 ∩ A4 |. (5.2)

Problem 230.• Use notation something like that of Equation (5.1) and Equa-
tion (5.2) to express the answer to Problem 229. Note there are many differ-
ent correct ways to do this problem. Try to write down more than one and
choose the nicest one you can. Say why you chose it (because your view of
what makes a formula nice may be different from somebody else’s). The
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nicest formula won’t necessarily involve all the elements of Equations (5.1)
and (5.2).

Problem 231.• A group of n students goes to a restaurant carrying back-
packs. The manager invites everyone to check their backpack at the check
desk and everyone does. While they are eating, a child playing in the check
room randomly moves around the claim check stubs on the backpacks. We
will try to compute the probability that, at the end of the meal, at least one
student receives his or her own backpack. This probability is the fraction
of the total number of ways to return the backpacks in which at least one
student gets his or her own backpack back.

(a) What is the total number of ways to pass back the backpacks?

(b) In how many of the distributions of backpacks to students does at least
one student get his or her own backpack? (h)

(c) What is the probability that at least one student gets the correct back-
pack?

(d) What is the probability that no student gets his or her own backpack?

(e)⇒ As the number of students becomes large, what does the probability
that no student gets the correct backpack approach?

Problem 231 is “classically” called the hatcheck problem; the name comes
from substituting hats for backpacks. If is also sometimes called the derangement
problem. A derangement of an n-element set is a permutation of that set (thought
of as a bĳection) that maps no element of the set to itself. One can think of a way of
handing back the backpacks as a permutation f of the students: f (i) is the owner
of the backpack that student i receives. Then a derangement is a way to pass back
the backpacks so that no student gets his or her own.

5.1.3 The Principle of Inclusion and Exclusion
The formula you have given in Problem 230 is often called the principle of inclusion
and exclusion for unions of sets. The reason is the pattern in which the formula
first adds (includes) all the sizes of the sets, then subtracts (excludes) all the sizes of
the intersections of two sets, then adds (includes) all the sizes of the intersections
of three sets, and so on. Notice that we haven’t yet proved the principle. There are
a variety of proofs. Perhaps one of the most straightforward (though not the most
elegant) is an iductive proof that relies on the fact that

A1 ∪ A2 ∪ · · · ∪ An = (A1 ∪ A2 ∪ · · · ∪ An−1) ∪ An

and the formula for the size of a union of two sets.



96 5. The Principle of Inclusion and Exclusion

Problem 232. Give a proof of your formula for the principle of inclusion
and exclusion. (h)

Problem 233. We get a more elegant proof if we ask for a picture enumerator
for A1 ∪ A2 ∪ · · · ∪ An . so let us assume A is a set with a picture function P
defined on it and that each set Ai is a subset of A.

(a) By thinking about how we got the formula for the size of a union,
write down instead a conjecture for the picture enumerator of a union.
You could use notation like EP(

⋂
i:i∈S Ai) for the picture enumerator

of the intersection of the sets Ai for i in a subset of S of [n].

(b) If x ∈ ⋃n
i=1 Ai , what is the coefficient for P(x) in (the inclusion-

exclusion side of) your formula for EP(
⋃n

i=1 Ai)? (h)

(c) If x !
⋃n

i=1 Ai , what is the coefficient of P(x) in (the inclusion-exclusion
side of) your formula for EP(

⋃n
i=1 Ai)?

(d) How have you proved your conjecture for the picture enumerator of
the union of the sets Ai?

(e) How can you get the formula for the principle of inclusion and exclu-
sion from your formula for the picture enumerator of the union?

Problem 234. Frequently when we apply the principle of inclusion and
exclusion, we will have a situation like that of part (d) of Problem 231.d.
That is, we will have a set A and subsets A1 ,A2 , . . . ,An and we will want
the size or the probability of the set of elements in A that are not in the
union. This set is known as the complement of the union of the Ais in A,
and is denoted by A \⋃n

i=1 Ai , or if A is clear from context, by
⋃n

i=1 Ai . Give
the fomula for

⋃n
i=1 Ai . The principle of inclusion and exclusion generall

refers to both this formula and the one for the union.

We can find a very elegant way of writing the formula in Problem 234 if we
let

⋂
i:i∈∅ Ai = A. for this reason, if we have a family of subsets Ai of a set A, we

define1
⋂

i:i∈∅ Ai = A.

1For those interested in logic and set theory, given a family of subsets Ai of a set A, we define
⋂

i:i∈S Ai
to be the set of all members x of A that are in Ai for all i ∈ S. (Note that this allows x to be in some other
Ajs as well.) Then if S = ∅, our intersection consists of all members x of A that satisfy the statement “if
i ∈ ∅, then x ∈ Ai .” But since the hypothesis of the “if-then” statement is false, the statement itself is
true for all x ∈ A. Therefor

⋂
i:i∈∅ Ai = A.
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5.2 Application of Inclusion and Exclusion
5.2.1 Multisets with restricted numbers of elements

Problem 235. In how many ways may we distribute k identical apples to n
children so that no child gets more than four apples? Compare your result
with your result in Problem 197 (h)

5.2.2 The Ménage Problem

Problem 236.⇒ A group of n married couples comes to a group discussion
session where they all sit around a round table. In how many ways can they
sit so that no person is next to his or her spouse? (Note that two people of
the same sex can sit next to each other.) (h)

Problem 237.⇒ ∗ A group of n married couples comes to a group discussion
session where they all sit around a round table. In how many ways can they
sit so that no person is next to his or her spouse or a person of the same sex?
This problem is called the ménage problem. (h)

5.2.3 Counting onto functions

Problem 238.• Given a function f from the k-element set K to the n-element
set [n], we say f is in the set Ai if f (x) " i for every x in K. How many of
these sets does an onto function belong to? What is the number of functions
from a k-element set onto an n-element set?

Problem 239.⇒ Find a formula for the Stirling number (of the second kind)
S(k , n). (h)

Problem 240. If we roll a die eight times, we get a sequence of 8 numbers,
the number of dots on top on the first roll, the number on the second roll,
and so on.

(a) What is the number of ways of rolling the die eight times so that each
of the numbers one through six appears at least once in our sequence?
To get a numerical answer, you will likely need a computer algebra
package.
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(b) What is the probability that we get a sequence in which all six numbers
between one and six appear? To get a numerical answer, you will
likely need a computer algebra package, programmable calculator, or
spreadsheet.

(c) How many times do we have to roll the die to have probability at
least one half that all six numbers appear in our sequence. To an-
swer this question, you will likely need a computer algebra package,
programmable calculator, or spreadsheet.

5.2.4 The chromatic polynomial of a graph
We defined a graph to consist of set V of elements called vertices and a set E of
elements called edges such that each edge joins two vertices. A coloring of a graph
by the elements of a set C (of colors) is an assignment of an element of C to each
vertex of the graph; that is, a function from the vertex set V of the graph to C.
A coloring is called proper if for each edge joining two distinct vertices2, the two
vertices it joins have different colors. You may have heard of the famous four color
theorem of graph theory that says if a graph may be drawn in the plane so that no
two edges cross (though they may touch at a vertex), then the graph has a proper
coloring with four colors. Here we are interested in a different, though related,
problem: namely, in how many ways may we properly color a graph (regardless
of whether it can be drawn in the plane or not) using k or fewer colors? When
we studied trees, we restricted ourselves to connected graphs. (Recall that a graph
is connected if, for each pair of vertices, there is a walk between them.) Here,
disconnected graphs will also be important to us. Given a graph which might
or might not be connected, we partition its vertices into blocks called connected
components as follows. For each vertex v we put all vertices connected to it by
a walk into a block together. Clearly each vertex is in at least one block, because
vertex v is connected to vertex v by the trivial walk consisting of the single vertex
v and no edges. To have a partition, each vertex must be in one and only one block.
To prove that we have defined a partition, suppose that vertex v is in the blocks B1

and B2. Then B1 is the set of all vertices connected by walks to some vertex v1 and
B2 is the set of all vertices connected by walks to some vertex v2.

Problem 241.· (Relevant in Appendix C as well as this section.) Show that
B1 = B2.

Since B1 = B2, these two sets are the same block, and thus all blocks containing
v are identical, so v is in only one block. Thus we have a partition of the vertex
set, and the blocks of the partition are the connected components of the graph.
Notice that the connected components depend on the edge set of the graph. If
we have a graph on the vertex set V with edge set E and another graph on the

2If a graph had a loop connecting a vertex to itself, that loop would connect a vertex to a vertex of the
same color. It is because of this that we only consider edges with two distinct vertices in our definition.
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vertex set V with edge set E′, then these two graphs could have different connected
components. It is traditional to use the Greek letter γ (gamma)3 to stand for the
number of connected components of a graph; in particular, γ(V, E) stands for the
number of connected components of the graph with vertex set V and edge set E.
We are going to show how the principle of inclusion and exclusion may be used to
compute the number of ways to properly color a graph using colors from a set C of
c colors.

Problem 242.· Suppose we have a graph G with vertex set V and edge set E.
Suppose F is a subset of E. Suppose we have a set C of c colors with which
to color the vertices.

(a) In terms of γ(V, F), in how many ways may we color the vertices of G
so that each edge in F connects two vertices of the same color? (h)

(b) Given a coloring of G, for each edge e in E, let us consider the property
that the endpoints of e are colored the same color. Let us call this
property “property e.” In this way each set of properties can be
thought of as a subset of E. What set of properties does a proper
coloring have?

(c) Find a formula (which may involve summing over all subsets F of
the edge set of the graph and using the number γ(V, F) of connected
components of the graph with vertex set V and edge set F) for the
number of proper colorings of G using colors in the set C. (h)

The formula you found in Problem 242.c is a formula that involves powers of c,
and so it is a polynomial function of c. Thus it is called the chromatic polynomial
of the graph G. Since we like to think about polynomials as having a variable x
and we like to think of c as standing for some constant, people often use x as the
notation for the number of colors we are using to color G. Frequently people will
use χG(x) to stand for the number of way to color G with x colors, and call χG(x)
the chromatic polynomial of G.

5.3 Deletion-Contraction and the Chromatic Polyno-
mial

Problem 243.⇒ In Chapter 2 we introduced the deletion-contraction recur-
rence for counting spanning trees of a graph. Figure out how the chromatic
polynomial of a graph is related to those resulting from deletion of an edge
e and from contraction of that same edge e. Try to find a recurrence like the
one for counting spanning trees that expresses the chromatic polynomial
of a graph in terms of the chromatic polynomials of G − e and G/e for an

3The greek letter gamma is pronounced gam-uh, where gam rhymes with ham.
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arbitrary edge e. Use this recurrence to give another proof that the number
of ways to color a graph with x colors is a polynomial function of x. (h)

Problem 244. Use the deletion-contraction recurrence to compute the chro-
matic polynomial of the graph in Figure 5.3.1. (You can simplify your
computations by thinking about the effect on the chromatic polynomial of
deleting an edge that is a loop, or deleting one of several edges between the
same two vertices.)

1 2

3

4

5

Figure 5.3.1: A
graph.

Problem 245.⇒

(a) In how many ways may you properly color the vertices of a path on
n vertices with x colors? Describe any dependence of the chromatic
polynomial of a path on the number of vertices.

(b) (Not tremendously hard.) In how many ways may you properly color
the vertices of a cycle on n vertices with x colors? Describe any
dependence of the chromatic polynomial of a cycle on the number of
vertices.

Problem 246. In how many ways may you properly color the vertices of a
tree on n vertices with x colors? (h)

Problem 247.⇒ What do you observe about the signs of the coefficients of the
chromatic polynomial of the graph in Figure 5.3.1? What about the signs
of the coefficients of the chromatic polynomial of a path? Of a cycle? Of a
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tree? Make a conjecture about the signs of the coefficients of a chromatic
polynomial and prove it.

5.4 Supplementary Problems
1. Each person attending a party has been asked to bring a prize. The person
planning the party has arranged to give out exactly as many prizes as there are
guests, but any person may win any number of prizes. If there are n guests, in how
many ways may the prizes be given out so that nobody gets the prize that he or she
brought?

2. There are m students attending a seminar in a room with n seats. The seminar
is a long one, and in the middle the group takes a break. In how many ways may
the students return to the room and sit down so that nobody is in the same seat as
before?

3. What is the number of ways to pass out k pieces of candy from an unlimited
supply of identical candy to n children (where n is fixed) so that each child gets
between three and six pieces of candy (inclusive)? If you have done Problem 1
of Supplementary Problems 4.4, compare your answer in that problem with your
answer in this one.

4.⇒ In how many ways may k distinct books be arranged on n shelves so that no
shelf gets more than m books?

5.⇒ Suppose that n children join hands in a circle for a game at nursery school. The
game involves everyone falling down (and letting go). In how many ways may they
join hands in a circle again so that nobody is to the right of the same child that was
previously to his or her right?

6.⇒ ∗ Suppose that n people link arms in a folk-dance and dance in a circle. Later
on they let go and dance some more, after which they link arms in a circle again.
In how many ways can they link arms the second time so that no-one is next to a
person with whom he or she linked arms before.

7.⇒ ∗ (A challenge; the author has not tried to solve this one!) Redo Problem 6 in the
case that there are n men and n women and when people arrange themselves in a
circle they do so alternating gender.

8.⇒ Suppose we take two graphs G1 and G2 with disjoint vertex sets, we choose one
vertex on each graph, and connect these two graphs by an edge e to get a graph
G12. How does the chromatic polynomial of G12 relate to those of G1 and G2?
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Chapter 6

Groups acting on sets

6.1 Permutation Groups
Until now we have thought of permutations mostly as ways of listing the elements
of a set. In this chapter we will find it very useful to think of permutations as
functions. This will help us in using permutations to solve enumeration problems
that cannot be solved by the quotient principle because they involve counting the
blocks of a partition in which the blocks don’t have the same size. We begin by
studying the kinds of permutations that arise in situations where we have used the
quotient principle in the past.

6.1.1 The rotations of a square

= identity 

1

1�

2

2�

4

4

3

3

4

1�

1

2�

3

4

2

3

3

1�

4

2�

2

4

1

3

2

1�

3

2�

1

4

4

3

1

1�

2

2�

4

4

3

3

ρ�

ρ�

ρ� ρ� ρ�2 3� 4

0=

Figure 6.1.1: The four possible results of rotating a square and maintaining its
position.

In Figure 6.1.1 we show a square with its four vertices labelled 1, 2, 3, and 4. We
have also labeled the spot in the plane where each of these vertices falls with the
same label. Then we have shown the effect of rotating the square clockwise through
90, 180, 270, and 360 degrees (which is the same as rotating through 0 degrees).
Underneath each of the rotated squares we have named the function that carries
out the rotation. We use ρ, the Greek letter pronounced “row,” to stand for a 90
degree clockwise rotation. We use ρ2 to stand for two 90 degree rotations, and so

103
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on. We can think of the function ρ as a function on the four element set1 {1, 2, 3, 4}.
In particular, for any function ϕ (the Greek letter phi, usually pronounced “fee,”
but sometimes “fie”) from the plane back to itself that may move the square around
but otherwise leaves it in the same place, we let ϕ(i) be the label of the place where
vertex previously in position i is now. Thus ρ(1) = 2, ρ(2) = 3, ρ(3) = 4 and
ρ(4) = 1. Notice that ρ is a permutation on the set {1, 2, 3, 4}.

Problem 248.• The composition f ◦ g of two functions f and g is defined by
f ◦ g(x) = f (g(x)). Is ρ3 the composition of ρ and ρ2? Does the answer
depend on the order in which we write ρ and ρ2? How is ρ2 related to ρ?

Problem 249.• Is the composition of two permutations always a permuta-
tion?

In Problem 248 you see that we can think of ρ2 ◦ ρ as the result of first rotating
by 90 degrees and then by another 180 degrees. In other words, the composition
of two rotations is the same thing as first doing one and then doing the other. Of
course there is nothing special about 90 degrees and 180 degrees. As long as we
first do one rotation through a multiple of 90 degrees and then another rotation
through a multiple of 90 degrees, the composition of these rotations is a rotation
through a multiple of 90 degrees.

If we first rotate by 90 degrees and then by 270 degrees then we have rotated
by 360 degrees, which does nothing visible to the square. Thus we say that ρ4 is
the “identity function.” In general the identity function on a set S, denoted by ι
(the Greek letter iota, pronounced eye-oh-ta) is the function that takes each element
of the set to itself. In symbols, ι(x) = x for every x in S. Of course the identity
function on a set is a permutation of that set.

6.1.2 Groups of Permutations

Problem 250.• For any function ϕ from a set S to itself, we define ϕn (for
nonnegative integers n) inductively by ϕ0 = ι and ϕn = ϕn−1 ◦ ϕ for every
positive integer n. If ϕ is a permutation, is ϕn a permutation? Based on your
experience with previous inductive proofs, what do you expect ϕn ◦ ϕm to
be? What do you expect (ϕm)n to be? There is no need to prove these last
two answers are correct, for you have, in effect, already done so in Chapter 2.

Problem 251.• If we perform the composition ι ◦ ϕ for any function ϕ from
S to S, what function do we get? What if we perform the composition ϕ ◦ ι?

1What we are doing is restricting the rotation ρ to the set {1, 2, 3, 4}.
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What you have observed about iota in Problem 251 is called the identity prop-
erty of iota. In the context of permutations, people usually call the function ι “the
identity” rather than calling it “iota.”

Since rotating first by 90 degrees and then by 270 degrees has the same effect
as doing nothing, we can think of the 270 degree rotation as undoing what the 90
degree rotation does. For this reason we say that in the rotations of the square, ρ3 is
the “inverse” of ρ. In general, a function ϕ : T → S is called an inverse of a function
σ : S → T (the lower case Greek letter sigma) if ϕ ◦ σ = σ ◦ ϕ = ι. For a slower
introduction to inverses and practice with them, see Section A.1.3 in Appendix A.
Since a permutation is a bĳection, it has a unique inverse, as in Section A.1.3. And
since the inverse of a bĳection is a bĳection (again, as in the Appendix), the inverse
of a permutation is a permutation.

We use ϕ−1 to denote the inverse of the permutation ϕ. We’ve seen that the
rotations of the square are functions that return the square to its original position
but may move the vertices to different places. In this way we create permutations
of the vertices of the square. We’ve observed three important properties of these
permutations.

• (Identity Property) These permutations include the identity permutation.

• (Inverse Property) Whenever these permutations include ϕ, they also include
ϕ−1.

• (Closure Property) Whenever these permutations include ϕ and σ, they also
include ϕ ◦ σ.

A set of permutations with these three properties is called a permutation group2
or a group of permutations. We call the group of permutations corresponding to
rotations of the square the rotation group of the square. There is a similar rotation
group with n elements for any regular n-gon.

Problem 252.• If f : S → T, g : T → X, and h : X → Y, is h ◦ (g ◦ f ) =
(h ◦ g) ◦ f ? What does this say about the status of the associative law

ρ ◦ (σ ◦ ϕ) = (ρ ◦ σ) ◦ ϕ

in a group of permutations?

Problem 253.•
(a) How should we defineϕ−n for an elementϕ of a permutation group? (h)

(b) Will the two standard rules for exponents

am an = am+n and (am)n = amn

2The concept of a permutation group is a special case of the concept of a group that one studies in
abstract algebra. When we refer to a group in what follows, if you know what groups are in the more
abstract sense, you may use the word in this way. If you do not know about groups in this more abstract
sense, then you may assume we mean permutation group when we say group.
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still hold if one or more of the exponents may be negative?

(c) What would we have to prove to show that the rules still hold?

(d) If the rules hold, give enough of the proof to show that you know how
to do it; otherwise give a counterexample.

Problem 254.• If a finite set of permutations satisfies the closure property is
it a permutation group? (h)

Problem 255.• There are three-dimensional geometric motions of the square
that return it to its original position but move some of the vertices to other
positions. For example, if we flip the square around a diagonal, most of
it moves out of the plane during the flip, but the square ends up in the
same place. Draw a figure like Figure 6.1.1 that shows all the possible
results of such motions, including the ones shown in Figure 6.1.1. Do the
corresponding permutations form a group?

Problem 256. Let σ and ϕ be permutations.

(a) Why must σ ◦ ϕ have an inverse?

(b) Is (σ ◦ ϕ)−1 = σ−1ϕ−1? (Prove or give a counter-example.) (h)

(c) Is (σ ◦ ϕ)−1 = ϕ−1σ−1? (Prove or give a counter-example.)

Problem 257.• Explain why the set of all permutations of four elements is a
permutation group. How many elements does this group have? This group
is called the symmetric group on four letters and is denoted by S4.

6.1.3 The symmetric group
In general, the set of all permutations of an n-element set is a group. It is called
the symmetric group on n letters. We don’t have nice geometric descriptions (like
rotations) for all its elements, and it would be inconvenient to have to write down
something like “Let σ(1) = 3, σ(2) = 1, σ(3) = 4, and σ(4) = 1” each time we need
to introduce a new permutation. We introduce a new notation for permutations
that allows us to denote them reasonably compactly and compose them reasonably
quickly. If σ is the permutation of {1, 2, 3, 4} given by σ(1) = 3, σ(2) = 1, σ(3) = 4
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and σ(4) = 2, we write

σ =

(
1 2 3 4

3 1 4 2

)
.

We call this notation the two row notation for permutations. In the two row
notation for a permutation of {a1 , a2 , . . . , an}, we write the numbers a1 through an
in a one row and we write σ(a1) through σ(an) in a row right below, enclosing both
rows in parentheses. Notice that

(
1 2 3 4

3 1 4 2

)
=

(
2 1 4 3

1 3 2 4

)
,

although the second ordering of the columns is rarely used.
If ϕ is given by

ϕ =

(
1 2 3 4

4 1 2 3

)
,

then, by applying the definition of composition of functions, we may compute σ◦ϕ
as shown in Figure 6.1.2.

1  2  3  4�
3  1  4  2( ) ( )1  2  3  4�

4  1  2  3 ( )1  2  3  4�
2  3  1  4

=

�

Figure 6.1.2: How to multiply permutations in two-row notation.

We don’t normally put the circle between two permutations in two row notation
when we are composing them, and refer to the operation as multiplying the permu-
tations, or as the product of the permutations. To see how Figure 6.1.2 illustrates
composition, notice that the arrow starting at 1 in ϕ goes to 4. Then from the 4 in
ϕ it goes to the 4 in σ and then to 2. This illustrates that ϕ(1) = 4 and σ(4) = 2, so
that σ(ϕ(1)) = 2.

Problem 258. For practice, compute
(
1 2 3 4 5

3 4 1 5 2

) (
1 2 3 4 5

4 3 5 1 2

)
.

6.1.4 The dihedral group
We found four permutations that correspond to rotations of the square. In Prob-
lem 255 you found four permutations that correspond to flips of the square in
space. One flip fixes the vertices in the places labeled 1 and 3 and interchanges
the vertices in the places labeled 2 and 4. Let us denote it by ϕ1|3. One flip fixes
the vertices in the positions labeled 2 and 4 and interchanges those in the positions
labeled 1 and 3. Let us denote it by ϕ2|4. One flip interchanges the vertices in the
places labeled 1 and 2 and also interchanges those in the places labeled 3 and 4.



108 6. Groups acting on sets

Let us denote it by ϕ12|34. The fourth flip interchanges the vertices in the places
labeled 1 and 4 and interchanges those in the places labeled 2 and 3. Let us denote
it by ϕ14|23. Notice that ϕ1|3 is a permutation that takes the vertex in place 1 to the
vertex in place 1 and the vertex in place 3 to the vertex in place 3, while ϕ12|34 is a
permutation that takes the edge between places 1 and 2 to the edge between places
2 and 1 (which is the same edge) and takes the edge between places 3 and 4 to the
edge between places 4 and 3 (which is the same edge). This should help to explain
the similarity in the notation for the two different kinds of flips.

Problem 259.• Write down the two-row notation for ρ3, ϕ2|4, ϕ12|34 and
ϕ2|4 ◦ ϕ12|34. Remember that σ(i) stands for the position where the vertex
that originated in position i is after we apply σ.

Problem 260. (You may have already done this problem in Problem 255, in
which case you need not do it again!) In Problem 255, if a rigid motion
of three-dimensional space returns the square to its original position, in
how many places can vertex number one land? Once the location of vertex
number one is decided, how many possible locations are there for vertex
two? Once the locations of vertex one and vertex two are decided, how
many locations are there for vertex three? Answer the same question for
vertex four. What does this say about the relationship between the four
rotations and four flips described above and the permutations you described
in Problem 255?

The four rotations and four flips of the square described before Problem 259
form a group called the dihedral group of the square. Sometimes the group is
denoted D8 because it has eight elements, and sometimes the group is denoted by
D4 because it deals with four vertices! Let us agree to use the notation D4 for the
dihedral group of the square. There is a similar dihedral group, denoted by Dn , of
all the rigid motions of three-dimensional space that return a regular n-gon to its
original position (but might put the vertices in different places.)

Problem 261. Another view of the dihedral group of the square is that it
is the group of all distance preserving functions, also called isometries,
from a square to itself. Notice that an isometry must be a bĳection. Any
rigid motion of the square preserves the distances between all points of the
square. However, it is conceivable that there might be some isometries that
do not arise from rigid motions. (We will see some later on in the case of
a cube.) Show that there are exactly eight isometires (distance preserving
functions) from a square to itself. (h)
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Problem 262. How many elements does the group Dn have? Prove that you
are correct.

Problem 263. In Figure 6.1.3 we show a cube with the positions of its vertices
and faces labeled. As with motions of the square, we let ϕ(x) be the label
of the place where vertex previously in position x is now.

Figure 6.1.3: A cube with the positions of its vertices and faces labelled. The
curved arrows point to the positions that are blocked by the cube.

(a) Write in two row notation the permutation ρ of the vertices that corre-
sponds to rotating the cube 90 degrees around a vertical axis through
the faces t (for top) and u (for underneath). (Rotate in a right-handed
fashion around this axis, meaning that vertex 6 goes to the back and
vertex 8 comes to the front.)

(b) Write in two row notation the permutation ϕ that rotates the cube
120 degrees around the diagonal from vertex 1 to vertex 7 and carries
vertex 8 to vertex 6.

(c) Compute the two row notation for ρ ◦ ϕ

(d) Is the permutation ρ ◦ ϕ a rotation of the cube around some axis? If
so, say what the axis is and how many degrees we rotate around the
axis. If ρ ◦ ϕ is not a rotation, give a geometic description of it.

Problem 264.⇒ · How many permutations are in the group R? R is sometimes
called the “rotation group” of the cube. Can you justify this? (h)
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Problem 265. As with a two-dimensional figure, it is possible to talk about
isometries of a three-dimensional figure. These are distance preserving
functions from the figure to itself. The function that reflects the cube in
Figure 6.1.3 through a plane halfway between the bottom face and top face
exchanges the vertices 1 and 5, 2 and 6, 3 and 7, and 4 and 8 of the cube. This
function preserves distances between points in the cube. However, it cannot
be achieved by a rigid motion of the cube because a rigid motion that takes
vertex 1 to vertex 5, vertex 2 to vertex 6, vertex 3 to vertex 7, and vertex 4 to
vertex 8 would not return the cube to its original location; rather it would
put the bottom of the cube where its top previously was and would put the
rest of the cube above that square rather than below it.

(a) How many elements are there in the group of permutations of [8] that
correspond to isometries of the cube? (h)

(b) Is every permutation of [8] that corresponds to an isometry either a
rotation or a reflection? (h)

6.1.5 Group tables (Optional)
We can always figure out the composition of two permutations of the same set
by using the definition of composition, but if we are going to work with a given
permutation group again and again, it is worth making the computations once
and recording them in a table. For example the group of rotations of the square
may be represented as in Table 6.1.4. We list the elements of our group, with the
identity first, across the top of the table and down the left side of the table, using
the same order both times. Then in the row labeled by the group element σ and the
column labelled by the group element ϕ, we write the composition σ◦ϕ, expressed
in terms of the elements we have listed on the top and on the left side. Since a
group of permutations is closed under composition, the result σ ◦ ϕ will always be
expressible as one of these elements.

◦ ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι
ρ2 ρ2 ρ3 ι ρ
ρ3 ρ3 ι ρ ρ2

Table 6.1.4: The group table for the rotations of a square.

Problem 266. In Table 6.1.4, all the entries in a row (not including the first
entry, the one to the left of the line) are different. Will this be true in any
group table for a permutation group? Why or why not? Also in Table 6.1.4
all the entries in a column (not including the first entry, the one above the
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line) are different. Will this be true in any group table for a permutation
group? Why or why not?

Problem 267. In Table 6.1.4, every element of the group appears in every
row (even if you don’t include the first element, the one before the line).
Will this be true in any group table for a permutation group? Why or why
not? Also in Table 6.1.4 every element of the group appears in every column
(even if you don’t include the first entry, the one before the line). Will this
be true in any group table for a permutation group? Why or why not?

Problem 268.• Write down the group table for the dihedral group D4. Use
the ϕ notation described above to denote the flips. (Hints: Part of the table
has already been written down. Will you need to think hard to write down
the last row? Will you need to think hard to write down the last column?
When you multiply a product like ϕ1|3 ◦ ρ remember that we defined ϕ1|3
to be the flip that fixes the vertex in position 1 and the vertex in position 3,
not the one that fixes the vertex on the square labelled 1 and the vertex on
the square labelled 3.)

You may notice that the associative law, the identity property, and the inverse
property are three of the most important rules that we use in regrouping paren-
theses in algebraic expressions when solving equations. There is one property we
have not yet mentioned, the commutative law which would say that σ ◦ϕ = ϕ ◦ σ.
It is easy to see from the group table of R4 that it satisfies the commutative law.

Problem 269. Does the commutative law hold in all permutation groups?

6.1.6 Subgroups
We have seen that the dihedral group D4 contains a copy of the group of rotations
of the square. When one group G of permutations of a set S is a subset of another
group G′ of permutations of S, we say that G is a subgroup of G′.

Problem 270.• Find all subgroups of the group D4. (h)

Problem 271. Can you find subgroups of the symmetric group S4 with two
elements? Three elements? Four elements? Six elements? (For each positive
answer, describe a subgroup. For each negative answer, explain why not.)
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6.1.7 The cycle structure of a permutation
There is an even more efficient way to write down permutations. Notice that the

product in Figure 6.1.2 is
(
1 2 3 4

2 3 1 4

)
. We have drawn the directed graph of this

permutation in Figure 6.1.5.

1

23
4

Figure 6.1.5: The directed graph of a permutation .

You see that the graph has two directed cycles, the rather trivial one with vertex 4
pointing to itself, and the nontrivial one with vertex 1 pointing to vertex 2 pointing
to vertex 3 which points back to vertex 1. A permutation is called a cycle if its

digraph consists of exactly one cycle. Thus
(
1 2 3

2 3 1

)
is a cycle but

(
1 2 3 4

2 3 1 4

)

is not a cycle by our definition. We write (1 2 3) or (2 3 1) or (3 1 2) to stand for the

cycle σ =
(
1 2 3

2 3 1

)
.

We can describe cycles in another way as well. A cycle of the permutation σ
is a list (i σ(i) σ2(i) . . . σn(i)) that does not have repeated elements while the list
(i σ(i) σ2(i) . . . σn(i)) σn+1(i)) does have repeated elements.

Problem 272. If the list (i σ(i) σ2(i) . . . σn(i)) does not have repeated
elements but the list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated
elements, then what is σn+1(i)? (h)

We say σ j(i) is an element of the cycle (i σ(i) σ2(i) . . . σn(i)). Notice that the case
j = 0 means i is an element of the cycle. Notice also that if j > n, σ j(i) = σ j−n−1(i),
so the distinct elements of the cycle are i, σ(i), σ2(i), through σn(i). We think of
the cycle (i σ(i) σ2(i) . . . σn(i)) as representing the permutation σ restricted to
the set of elements of the cycle. We say that the cycles (i σ(i) σ2(i) . . . σn(i)) and
( j σ( j) σ2( j) . . . σn( j)) are equivalent if there is an integer k such that j = σk(i).

Problem 273.• Find the cycles of the permutations ρ, ϕ1|3 and ϕ12|34 in the
group D4.
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Problem 274. Find the cycles of the permutation
(
1 2 3 4 5 6 7 8 9

3 4 6 2 9 7 1 5 8

)
.

Problem 275. If two cycles of σ have an element in common, what can we
say about them?

Problem 275 leads almost immediately to the following theorem.

Theorem 6.1.6. for each permutation σ of a set S, there is a unique partition of S each of
whose blocks is the set of elements of a cycle of σ.

More informally, we may say that every permutation partitions its domain into
disjoint cycles. We call the set of cycles of a permutation the cycle decomposition
of the permutation. Since the cycles of a permutation σ tell us σ(x) for every x in
the domain of σ, the cycle decomposition of a permutation completely determines
the permutation. Using our informal language, we can express this idea in the
following corollary to Theorem 6.1.6.

Corollary 6.1.7. Every partition of a set S into cycles determins a unique permutation of
S.

Problem 276. Prove Theorem 6.1.6.

In Problems 273 and Problem 274 you found the cycle decomposition of typical
elements of the group D4 and of the permutation

(
1 2 3 4 5 6 7 8 9

3 4 6 2 9 7 1 5 8

)

The group of all rotations of the square is simply the set of the four powers
of the cycle ρ = (1 2 3 4). for this reason it is called a cyclic group3 and is often
denoted by C4. Similarly, the rotation group of an n-gon is usually denoted Cn .

Problem 277.⇒ Write a recurrence for the number c(k , n) for the number of
permutations of [k] that have exactly n cycles, including 1-cycles. Use it
to write a table of c(k , n) for k between 1 and 7 inclusive. Can you find a
relationship between c(k , n) and any of the other families of special numbers
such as binomial coefficients, Stirling numbers, Lah numbers, etc. we have
studied? If you find such a relationship, prove you are right. (h)

3The phrace cyclic group applies in a more general (but similar) situation. Namely the set of all
powers of any member of a group is called a cyclic group.
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Problem 278.⇒ · (Relevant to Appendix C.) A permutation σ is called an in-
volution if σ2 = ι. When you write an involution as a product of disjoint
cycles, what is special about the cycles?

6.2 Groups Acting on Sets
We defined the rotation group R4 and the dihedral group D4 as groups of permu-
tations of the vertices of a square. These permutations represent rigid motions of
the square in the plane and in three dimensional space respectively. The square
has geometric features of interest other than its vertices; for example its diagonals,
or its edges. Any geometric motion of the square that returns it to its original
position takes each diagonal to a possibly different diagonal, and takes each edge
to a possibly different edge. In Figure 6.2.1 we show the results on the sides and
diagonals of the rotations of a square. The rotation group permutes the sides of
the square and permutes the diagonals of the square as it rotates the square. Thus,
we say the rotation group “acts” on the sides and diagonals of the square.
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Figure 6.2.1: The results on the sides and diagonals of rotating the square

Problem 279.

(a) Write down the two-line notation for the permutation ρ that a 90
degree rotation does to the sides of the square.

(b) Write down the two-line notation for the permutation ρ2 that a 180
degree rotation does to the sides of the square.

(c) Is ρ2 = ρ ◦ ρ? Why or why not?

(d) Write down the two-line notation for the permutation ρ̂ that a 90
degree rotation does to the diagonals d13 and d24 of the square.

(e) Write down the two-line notation for the permutation ρ̂2 that a 180
degree rotation does to the diagonals d13 and d24 of the square.

(f) Is ρ̂2 = ρ̂ ◦ ρ̂? Why or why not? What familiar permutation is ρ̂2 in
this case?
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We have seen that the fact that we have defined a permutation group as the
permutations of some specific set doesn’t preclude us from thinking of the elements
of that group as permuting the elements of some other set as well. In order to keep
track of which permutations of which set we are using to define our group and
which other set is being permuted as well, we introduce some new language and
notation. We are going to say that the group D4 “acts” on the edges and diagonals
of a square and the group R of permutations of the vertices of a cube that arise from
rigid motions of the cube “acts” on the edges, faces, diagonals, etc. of the cube.

Problem 280.• In Figure 6.1.3 we show a cube with the positions of its vertices
and faces labeled. As with motions of the square, we let we let ϕ(x) be the
label of the place where vertex previously in position x is now.

(a) In Problem 263 we wrote in two row notation the permutation ρ of
the vertices that corresponds to rotating the cube 90 degrees around
a vertical axis through the faces t (for top) and u (for underneath).
(We rotated in a right-handed fashion around this axis, meaning that
vertex 6 goes to the back and vertex 8 comes to the front.) Write in two
row notation the permutation ρ of the faces that corresponds to this
member ρ of R.

(b) In Problem 263 we wrote in two row notation the permutation ϕ that
rotates the cube 120 degrees around the diagonal from vertex 1 to
vertex 7 and carries vertex 8 to vertex 6. Write in two row notation the
ϕ of the faces that corresponds to this member of R.

(c) In Problem 263 we computed the two row notation for ρ ◦ ϕ. Now
compute the two row notation for ρ ◦ ϕ (ρ was defined in Part 280.a),
and write in two row notation the permutation ρ ◦ ϕ of the faces that
corresponds to the action of the permutation ρ ◦ ϕ on the faces of the
cube. (For this question it helps to think geometrically about what
motion of the cube is carried out by ρ ◦ ϕ.) What do you observe
about ρ ◦ ϕ and ρ ◦ ϕ?

We say that a permutation group G acts on a set S if, for each member σ of G
there is a permutation σ of S such that

σ ◦ ϕ = σ ◦ ϕ

for every member σ and ϕ of G. In Problem 280.c you saw one example of this
condition. If we think intuitively of ρ and ϕ as motions in space, then following
the action of ϕ by the action of ρ does give us the action of ρ ◦ ϕ. We can also
reason directly with the permutations in the group R of rigid motions (rotations)
of the cube to show that R acts on the faces of the cube.

Problem 281. Show that a group G of permutations of a set S acts on S with
ϕ = ϕ for all ϕ in G.
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Problem 282.• The group D4 is a group of permutations of {1, 2, 3, 4} as
in Problem 255. We are going to show in this problem how this group
acts on the two-element subsets of {1, 2, 3, 4}. In Problem 287 we will see
a natural geometric interpretation of this action. In particular, for each
two-element subset {i , j} of {1, 2, 3, 4} and each member σ of D4 we define
σ({i , j}) = {σ(i), σ( j)}. Show that with this definition of σ, the group D4

acts on the two-element subsets of {1, 2, 3, 4}.

Problem 283.• Suppose that σ and ϕ are permutations in the group R of
rigid motions of the cube. We have argued already that each rigid motion
sends a face to a face. Thus σ and ϕ both send the vertices on one face to
the vertices on another face. Let {h , i , j, k} be the set of labels next to the
vertices on a face F.

(a) What are the vertices of the face F′ that F is sent to by ϕ?

(b) What are the vertices of the face F′′ that F′ is sent to by σ?

(c) What are the vertices of the face F′′′ that F is sent to by σ ◦ ϕ?

(d) How have you just shown that the group R acts on the faces?

6.2.1 Groups acting on colorings of sets
Recall that when you were asked in Problem 45 to find the number of ways to
place two red beads and two blue beads at the corners of a square free to move
in three-dimensional space, you were not able to apply the quotient principle to
answer the question. Instead you had to see that you could divide the set of six
lists of two Rs and two Bs into two sets, one of size two in which the Rs and Bs
alternated and one of size four in which the two reds (and therefore the two blues)
would be side-by-side on the square. Saying that the square is free to move in space
is equivalent to saying that two arrangements of beads on the square are equivalent
if a member of the dihedral group carries one arrangement to the other. Thus an
important ingredient in the analysis of such problems will be how a group can
act on colorings of a set of vertices. We can describe the coloring of the square in
Figure 6.2.2 as the function f with

f (1) = R, f (2) = R, f (3) = B, and f (4) = B,

but it is more compact and turns out to be more suggestive to represent the coloring
in Figure 6.2.2 as the set of ordered pairs

(1, R), (2, R), (3, B), (4, B) (6.1)
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4 3

1 2

B B

R R

Figure 6.2.2: The colored square with coloring {(1, R), (2, R), (3, B), (4, B)}

This gives us an explicity list of which colors are assigned to which vertex.4
Then if we rotate the square through 90 degrees, we see that the set of ordered
pairs becomes {

(ρ(1), R), (ρ(2), R), (ρ(3), B), (ρ(4), B)
}

(6.2)
which is the same as

{(2, R), (3, R), (4, B), (1, B)} .
Or, in a more natural order,

{(1, B), (2, R), (3, R), (4, B)} . (6.3)

The reordering we did in (6.3) suggests yet another simplification of notation. So
long as we know we that the first elements of our pairs are labeled by the members
of [n] for some integer n and we are listing our pairs in increasing order by the first
component, we can denote the coloring

{(1, B), (2, R), (3, R), (4, B)}

by BRRB. In the case where we have numbered the elements of the set S we are
coloring, we will call this list of colors of the elements of S in order the standard
notation for the coloring. We will call the ordering used in (6.3)the standard
ordering of the coloring.

Thus we have three natural ways to represent a coloring of a set: as a function,
as a set of ordered pairs, and as a list. Different representations are useful for
different things. For example, the representation by ordered pairs will provide a
natural way to define the action of a group on colorings of a set. Given a coloring
as a function f , we denote the set of ordered pairs{

(x , f (x)) | x ∈ S
}

,

suggestively as (S, f ) for short. We use f (1) f (2) · · · f (n) to stand for a particular
coloring (S, f ) in the standard notation.

Problem 284. Suppose now that instead of coloring the vertices of a square,
we color its edges. We will use the shorthand 12, 23, 34, and 41 to stand for
the edges of the square between vertex 1 and vertex 2, vertex 2 and vertex

4The reader who has studied Appendix A will recognize that this set of ordered pairs is the relation
of the function f , but we won’t need to make any specific references to the idea of a relation in what
follows.
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3, and so on. Then a coloring of the edges with 12 red, 23 blue, 34 red and
41 blue can be represented as

{(12, R), (23, B), (34, R), (41, B)} . (6.4)

If ρ is the rotation through 90 degrees, then we have a permutation ρ acting
on its edges. This permutation acts on the colorings to give us a permutation
ρ of the set of colorings.

(a) What is ρ of the coloring in (6.4)?

(b) What is ρ2 of the coloring in (6.4)?

If G is a group that acts on the set S, we define the action of G on the colorings
(S, f ) by by

σ((S, f )) = σ
({
(x , f (x)) | x ∈ S

})
=

{
(σ(x), f (x)) | x ∈ S

}
.. (6.5)

We have two bars over σ because σ is a permutation of one set that gives us a
permutation σ of a second set, and then σ acts to give a permutation σ of a thid set,
the set of colorings. For example, suppose we want to analyze colorings of the faces
of a cube under the action of the rotation group of the cube as we have defined it
on the vertices. Each vertex-permutation σ in the group gives a permutation σ of
the faces of the cube. Then each permutation σ of the faces gives us a permutation
σ of the colorings of the faces.

In the special case that G is a group of permutations of S rather than a group
acting on S, Equation (6.5) becomes

σ((S, f )) = σ({(x , f (x)) | x ∈ S}) = {(σ(x), f (x)) | x ∈ S}.

In the case where G is the rotation group of the square acting on the vertices of the
square, the example of acting on a coloring by ρ that we saw in (6.3) is an example
of this kind of action. In the standard notation, when we act on a coloring by σ, the
color in position i moves to position σ(i).

Problem 285. Why does the action we have defined on colorings in Equa-
tion (6.5) take a coloring to a coloring?

Problem 286. Show that if G is a group of permutations of a set S, and f is
a coloring function on S, then the equation

σ({(x , f (x)) | x ∈ S}) = {(σ(x), f (x)) | x ∈ S}

defines an action of G on the colorings (S, f ) of S. (h)
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6.2.2 Orbits

Problem 287.• Refer back to Problem 282 in answering the following ques-
tions.

(a) What is the set of two element subsets that you get by computing
σ({1, 2}) for all σ in D4?

(b) What is the multiset of two-element subsets that you get by computing
σ({1, 2}) for all σin D4?

(c) What is the set of two-element subsets you get by computing σ({1, 3})
for all σ in D4?

(d) What is the multiset of two-element subsets that you get by computing
σ({1, 3}) for all σ in D4?

(e) Describe these two sets geometrically in terms of the square.

Problem 288.• This problem uses the notation for permutations in the dihe-
dral group of the square introduced before Problem 259. What is the effect
of a 180 degree rotation ρ2 on the diagonals of a square? What is the effect
of the flip ϕ1|3 on the diagonals of a square? How many elements of D4

send each diagonal to itself? How many elements of D4 interchange the
diagonals of a square?

In Problem 287 you saw that the action of the dihedral group D4 on two element
subsets of {1, 2, 3, 4} seems to split them into two sets, one with two elements
and one with 4. We call these two sets the “orbits” of D4 acting on the two
elements subsets of {1, 2, 3, 4}. More generally, the orbit of a permutation group G
determined by an element x of a set S on which G acts is

{σ(x)|σ ∈ G},

and is denoted by Gx. In Problem 287 it was possible to have Gx = Gy. In fact in
that problem, Gx = Gy for every y in Gx.

Problem 289. Suppose a group acts on a set S. Could an element of S be in
two different orbits? (Say why or why not.) (h)

Problem 289 almost completes the proof of the following theorem.

Theorem 6.2.3. Suppose a group acts on a set S. The orbits of G form a partition of S.

It is probably worth pointing out that this theorem tells us that the orbit Gx is
also the orbit Gy for any element y of Gx.
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Problem 290. Complete the proof of Theorem 6.2.3.

Notice that thinking in terms of orbits actually hides some information about
the action of our group. When we computed the multiset of all results of acting on
{1, 2} with the elements of D4, we got an eight-element multiset containing each
side twice. When we computed the multiset of all results of acting on {1, 3} with
the elements of D4, we got an eight-element multiset containing each diagonal of
the square four times. These multisets remind us that we are acting on our two-
element sets with an eight-element group. The multiorbit of G determined by an
element x of S is the multiset

{σ(x) | σ ∈ G},

and is denoted by Gxmulti.
When we used the quotient principle to count circular seating arrangements or

necklaces, we partitioned up a set of lists of people or beads into blocks of equivalent
lists. In the case of seating n people around a round table, what made two lists
equivalent was, in retrospect, the action of the rotation group Cn . In the case of
stringing n beads on a string to make a necklace, what made two lists equivalent
was the action of the dihedral group. Thus the blocks of our partitions were orbits
of the rotation group or the dihedral group, and we were counting the number of
orbits of the group action. In Problem 45, we were not able to apply the quotient
principle because we had blocks of different sizes. However, these blocks were still
orbits of the action of the group D4. And, even though the orbits have different
sizes, we expect that each orbit corresponds naturally to a multiorbit and that the
multiorbits all have the same size. Thus if we had a version of the quotient rule for
a union of multisets, we could hope to use it to count the number of multiorbits.

Problem 291.

(a) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, R), (3, B), (4, B)},

or, in standard notation, RRBB of the vertices of a square.

(b) How many group elements map the coloring RRBB to itself? What is
the multiplicity of RRBB in its multiorbit?

(c) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, B), (3, R), (4, B)}.

(d) How many elements of the group send the coloring RBRB to itself?
What is the multiplicity of RBRB in its orbit?
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Problem 292.

(a) If G is a group, how is the set {τσ | τ ∈ G} related to G?

(b) Use this to show that y is in the multiorbit Gxmulti if and only if
Gxmulti = Gymulti.

Problem 292.b tells us that, when G acts on S, each element x of S is in one and
only one multiorbit. Since each orbit is a subset of a multiorbit and each element x
in S is in one and only one orbit, this also tells us there is a bĳection between the
orbits of G and the multiorbits of G, so that we have the same number of orbits as
multiorbits.

When a group acts on a set, a group element is said to fix an element of x ∈ S if
σ(x) = x. The set of all elements fixing an element x is denoted by (x).

Problem 293. Suppose a group G acts on a set S. What is special about the
subset (x) for an element x of S?

Problem 294.• Suppose a group G acts on a set S. What is the relationship
of the multiplicity of x ∈ S in its multiorbit and the size of (x)?

Problem 295. What can you say about relationships between the multiplic-
ity of an element y in the multiorbit Gxmulti and the multiplicites of other
elements? Try to use this to get a relationship between the size of an orbit
of G and the size of G. (h)

We suggested earlier that a quotient principle for multisets might prove useful.
The quotient principle came from the sum principle, and we do not have a sum
principle for multisets. Such a principle would say that the size of a union of disjoint
multisets is the sum of their sizes. We have not yet defined the union of multisets
or disjoint multisets, because we haven’t needed the ideas until now. We define the
union of two multisets S and T to be the multiset in which the multiplicity of an
element x is the maximum5 of the multiplicity of x in S and its multiplicity in T .
Similarly, the union of a family of multisets is defined by defining the multiplicity of
an element x to be the maximum of its multiplicities in the members of the family.
Two multisets are said to be disjoint if no element is a member of both, that is, if
no element has multiplicity one or more in both. Since the size of a multiset is the
sum of the multiplicities of its members, we immediately get the sum principle for
multisets.

The size of a union of disjoint multisets is the sum of their sizes.

5We choose the maximum rather than the sum so that the union of sets is a special case of the union
of multisets.
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Taking the multisets all to have the same size, we get the product principle for
multisets.

The union of a set of m disjoint multisets, each of size n has size mn.

The quotient principle for multisets then follows immediately.

If a p-element multiset is a union of q disjoint multisets, each of size r,
then q = p/r.

Problem 296.• How does the size of the union of the set of multiorbits of a
group G acting on a set S relate to the number of multiorbits and the size of
G?

Problem 297.• How does the size of the union of the set of multiorbits of a
group G acting on a set S relate to the numbers | (x)|?

Problem 298.• In Problems 296 and 297 you computed the size of the union
of the set of multiorbits of a group G acting on a set S in two different ways,
getting two different expressions must be equal. Write the equation that
says they are equal and solve for the number of multorbits, and therefore
the number of orbits.

6.2.3 The Cauchy-Frobenius-Burnside Theorem

Problem 299.• In Problem 298 you stated and proved a theorem that ex-
presses the number of orbits in terms of the number of group elements
fixing each element of S. It is often easier to find the number of elements
fixed by a given group element than to find the number of group elements
fixing an element of S.

(a) For this purpose, how does the sum
∑

x : x∈S | (x)| relate to the
number of ordered pairs (σ, x) (with σ ∈ G and x ∈ S) such that σ
fixes x?

(b) Let χ(σ) denote the number of elements of S fixed by σ. How can the
number of ordered pairs (σ, x) (with σ ∈ G and x ∈ S) such that σ
fixes x be computed from χ(G)? (It is ok to have a summation in your
answer.)

(c) What does this tell you about the number of orbits?
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Problem 300. A second computation of the result of Problem 299 can be
done as follows.

(a) Let χ̂(σ, x) = 1 if σ(x) = x and let χ̂(σ, x) = 0 otherwise. Notice
that χ̂ is different from the χ in the previous problem, because it is
a function of two variables. Use χ̂ to convert the single summation
in Problem 298 into a double summation over elements x of S and
elements σ of G.

(b) Reverse the order of the previous summation in order to convert it into
a single sum involving the function χ given by

χ(σ) = the number of elements of S left fixed by σ.

In Problem 299 you gave a formula for the number of orbits of a group G acting
on a set X. This formula was first worked out by Cauchy in the case of the symmetric
group, and then for more general groups by Frobenius. In his pioneering book on
Group Theory, Burnside used this result as a lemma, and while he attributed the
result to Cauchy and Frobenius in the first edition of his book, in later editions,
he did not. Later on, other mathematicians who used his book named the result
“Burnside’s Lemma," which is the name by which it is still most commonly known.
Let us agree to call this result the Cauchy-Frobenius-Burnside Theorem, or CFB
Theorem for short in a compromise between historical accuracy and common usage.

Problem 301.⇒ In how many ways may we string four (identical) red, six
(identical) blue, and seven (identical) green beads on a necklace? (h)

Problem 302.⇒ If we have an unlimited supply of identical red beads and
identical blue beads, in how many ways may we string 17 of them on a
necklace?

Problem 303.⇒ If we have five (identical) red, five (identical) blue, and five
(identical) green beads, in how many ways may we string them on a neck-
lace?

Problem 304.⇒ In how many ways may we paint the faces of a cube with six
different colors, using all six?
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Problem 305. In how many ways may we paint the faces of a cube with two
colors of paint? What if both colors must be used? (h)

Problem 306.⇒ In how many ways may we color the edges of a (regular)
(2n + 1)-gon free to move around in the plane (so it cannot be flipped) if we
use red n times and blue n + 1 times? If this is a number you have seen
before, identify it. (h)

Problem 307.⇒ ∗ In how many ways may we color the edges of a (regular)
(2n + 1)-gon free to move in three-dimensional space so that n edges are
colored red and n + 1 edges are colored blue. Your answer may depend on
whether n is even or odd.

Problem 308.⇒ ∗ (Not unusually hard for someone who has worked on chro-
matic polynomials.) How many different proper colorings with four colors
are there of the vertices of a graph which is cycle on five vertices? (If we get
one coloring by rotating or flipping another one, they aren’t really different.)

Problem 309.⇒ ∗ How many different proper colorings with four colors are
there of the graph in Figure 6.2.4? Two graphs are the same if we can
redraw one of the graphs, not changing the vertex set or edge set, so that it
is identical to the other one. This is equivalent to permuting the vertices in
some way so that when we apply the permutation to the endpoints of the
edges to get a new edge set, the new edge set is equal to the old one. Such
a permutation is called an automorphism of the graph. Thus two colorings
are different if there is no automorphism of the graph that carries one to the
other one.

1� 2�

3

4�5�

6

Figure 6.2.4: A graph on six vertices.

(h)
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6.3 Pólya-Redfield Enumeration Theory
George Pólya and Robert Redfield independently developed a theory of generating
functions that describe the action of a group G on functions from a set S to a set T
when we know the action of G on S. Pólya’s work on the subject is very accessible
in its exposition, and so the subject has become popularly known as Pólya theory,
though Pólya-Redfield theory would be a better name. In this section we develop
the elements of this theory.

The idea of coloring a set S has many applications. For example, the set S might
be the positions in a hydrocarbon molecule which are occupied by hydrogen, and
the group could be the group of spatial symmetries of the molecule (that is, the
group of permutations of the atoms of the molecule that move the molecule around
so that in its final position the molecule cannot be distinguished from the original
molecule). The colors could then be radicals (including hydrogen itself) that we
could substitute for each hydrogen position in the molecule. Then the number
of orbits of colorings is the number of chemically different compounds we could
create by using these substitutions.6

In Figure 6.3.1 we show two different ways to substitute the OH radical for a
hydrogen atom in the chemical diagram we gave for butane in Chapter 2. We have
colored one vertex of degree 1 with the radical OH and the rest with the atom H.
There are only two distinct ways to do this, as the OH must either connect to an
“end” C or a “middle” C. This shows that there are two different forms, called
isomers of the compound shown. This compound is known as butyl alcohol.

Figure 6.3.1: The two different isomers of butyl alcohol.

So think intuitively about some “figure” that has places to be colored. (Think
of the faces of a cube, the beads on a necklace, circles at the vertices of an n-gon,
etc.) How can we picture the coloring? If we number the places to be colored,
say 1 to n, then a function from [n] to the colors is exactly our coloring; if our
colors are blue, green and red, then BBGRRGBG describes a typical coloring of 8
such places. Unless the places are somehow “naturally” numbered, this idea of a
coloring imposes structure that is not really there. Even if the structure is there,
visualizing our colorings in this way doesn’t “pull together” any common features

6There is a fascinating subtle issue of what makes two molecules different. For example, suppose
we have a molecule in the form of a cube, with one atom at each vertex. If we interchange the top and
bottom faces of the cube, each atom is still connected to exactly the same atoms as before. However we
cannot achieve this permutation of the vertices by a member of the rotation group of the cube. It could
well be that the two versions of the molecule interact with other molecules in different ways, in which
case we would consider them chemically different. On the other hand if the two versions interact with
other molecules in the same way, we would have no reason to consider them chemically different. This
kind of symmetry is an example of what is called chirality in chemistry.
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of different colorings; we are simply visualizing all possible functions. We have
a group (think of it as symmetries of the figure you are imagining) that acts on
the places. That group then acts in a natural way on the colorings of the places
and we are interested in orbits of the colorings. Thus we want a picture that pulls
together the common features of the colorings in an orbit. One way to pull together
similarities of colorings would be to let the letters we are using as pictures of colors
commute as we did with our pictures in Chapter 4; then our picture BBGRRGBG
becomes B3G3R2, so our picture now records simply how many times we use each
color. If you think about how we defined the action of a group on a set of functions,
you will see that a group element won’t change how many times each color is used;
it simply moves colors to different places. Thus the picture we now have of a given
coloring is an equally appropriate picture for each coloring in an orbit. One natural
question for us to ask is “How many orbits have a given picture?”

Problem 310. Suppose we draw identical circles at the vertices of a regular
hexagon. Suppose we color these circles with two colors, red and blue.

(a) In how many ways may we color the set {1, 2, 3, 4, 5, 6} using the colors
red and blue?

(b) These colorings are partitioned into orbits by the action of the rotation
group on the hexagon. Using our standard notation, write down all
these orbits and observe how many orbits have each picture, assum-
ing the picture of a coloring is the product of commuting variables
representing the colors.

(c) Using the picture function of the previous part, write down the picture
enumerator for the orbits of colorings of the vertices of a hexagon
under the action of the rotation group.

In Problem c we saw a picture enumerator for pictures of orbits of the action of
a group on colorings. As above, we can ask how many orbits of the colorings have
any given picture. We can think of a multivariable generating function in which
the letters we use to picture individual colors are the variables, and the coefficient
of a picture is the number of orbits with that picture. Such a generating function is
an answer to our natural question, and so it is this sort of generating function we
will seek. Since the CFB theorem was our primary tool for saying how many orbits
we have, it makes sense to think about whether the CFB theorem has an analog in
terms of pictures of orbits.

6.3.1 The Orbit-Fixed Point Theorem

Problem 311.• Suppose now we have a group G acting on a set and we have
a picture function on that set with the additional feature that for each orbit
of the group, all its elements have the same picture. In this circumstance
we define the picture of an orbit or multiorbit to be the picture of any one
of its members. The orbit enumerator (G, S) is the sum of the pictures
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of the orbits. (Note that this is the same as the sum of the pictures of
the multiorbits.) The fixed point enumerator (G, S) is the sum of the
pictures of each of the fixed points of each of the elements of G. We are
going to construct a generating function analog of the CFB theorem. The
main idea of the proof of the CFB theorem was to try to compute in two
different ways the number of elements (i.e. the sum of all the multiplicities
of the elements) in the union of all the multiorbits of a group acting on a
set. Suppose instead we try to compute the sum of all the pictures of all
the elements in the union of the multiorbits of a group acting on a set. By
thinking about how this sum relates to (G, S) and (G, S), find an
analog of the CFB theorem that relates these two enumerators. State and
prove this theorem.

We call the theorem of Problem 311 the Orbit-Fixed Point Theorem. In or-
der to apply the Orbit-Fixed Point Theorem, we need some facts about picture
enumerators.

Problem 312.• Suppose that P1 and P2 are picture functions on sets S1 and S2

in the sense of Section 4.1.2. Define P on S1×S2 by P(x1 , x2) = P1(x1)P2(x2).
How are EP1 , EP1 , and EP related? (You may have already done this problem
in another context!)

Problem 313.• Suppose Pi is a picture function on a set Si for i = 1, . . . , k.
We define the picture of a k-tuple (x1 , x2 , . . . , xk) to be the product of the
pictures of its elements, i.e.

P̂((x1 , x2 , . . . , xk)) =
k∏

i=1

Pi(xi).

How does the picture enumerator EP̂ of the set S1×S2× · · ·×Sk of all k-tuples
with xi ∈ S relate to the picture enumerators of the sets Si? In the special
case that Si = S for all i and Pi = P for all i, what is EP̂(S

k)?

Problem 314.• Use the Orbit-Fixed Point Theorem to determine the Orbit
Enumerator for the colorings, with two colors (red and blue), of six circles
placed at the vertices of a hexagon which is free to move in the plane.
Compare the coefficients of the resulting polynomial with the various orbits
you found in Problem 310.
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Problem 315. Find the generating function (in variables R, B) for colorings
of the faces of a cube with two colors (red and blue). What does the gen-
erating function tell you about the number of ways to color the cube (up to
spatial movement) with various combinations of the two colors.

6.3.2 The Pólya-Redfield Theorem
Pólya’s (and Redfield’s) famed enumeration theorem deals with situations such as
those in Problems 314 and Problem 315 in which we want a generating function for
the set of all functions from a set S to a set T on which a picture function is defined,
and the picture of a function is the product of the pictures of its multiset of values.
The point of the next series of problems is to analyze the solution to Problems 314
and Problem 315 in order to see what Pólya and Redfield saw (though they didn’t
see it in this notation or using this terminology).

Problem 316.• In Problem 314 we have four kinds of group elements: the
identity (which fixes every coloring), the rotations through 60 or 300 degrees,
the rotations through 120 and 240 degrees, and the rotation through 180
degrees. The fixed point enumerator for the rotation group acting on the
functions is by definition the sum of the fixed point enumerators of colorings
fixed by the identity, of colorings fixed by 60 or 300 degree rotations, of
colorings fixed by 120 or 240 degree rotations, and of colorings fixed by the
180 degree rotation. Write down each of these enumerators (one for each
kind of permutation) individually and factor each one (over the integers) as
completely as you can.

Problem 317.• In Problem 315 we have five different kinds of group ele-
ments, and the fixed point enumerator is the sum of the fixed point enumer-
ators of each of these kinds of group elements. For each kind of element,
write down the fixed point enumerator for the elements of that kind. Factor
the enumerators as completely as you can.

Problem 318.• In Problem 316, each “kind” of group element has a “kind” of
cycle structure. For example, a rotation through 180 degrees has three cycles
of size two. What kind of cycle structure does a rotation through 60 or 300
degrees have? What kind of cycle structure does a rotation through 120 or
240 degrees have? Discuss the relationship between the cycle structures and
the factored enumerators of fixed points of the permutations in Problem 316.
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Recall that we said that a group of permutations acts on a set if, for each member
σ of G there is a bĳection σ of S such that

σ ◦ ϕ = σ ◦ ϕ
for every member σ and ϕ of G. Since σ is a bĳection of S to itself, it is in fact a
permutation of S. Thus σ has a cycle structure (that is, it is a product of disjoint
cycles) as a permutation of S (in addition to whatever its cycle structure is in the
original permutation group G).

Problem 319.• In Problem 317, each “kind” of group element has a “kind”
of cycle structure in the action of the rotation group of the cube on the faces
of the cube. For example, a rotation of the cube through 180 degrees around
a vertical axis through the centers of the top and bottom faces has two cycles
of size two and two cycles of size one. How many such rotations does the
group have? What are the other “kinds” of group elements, and what are
their cycle structures? Discuss the relationship between the cycle structure
and the factored enumerator in Problem 317.

Problem 320.• The usual way of describing the Pólya-Redfield enumeration
theorem involves the “cycle indicator” or “cycle index” of a group acting on
a set. Suppose we have a group G acting on a finite set S. Since each group
element σ gives us a permutation σ of S, as such it has a decomposition into
disjoint cycles as a permutation of S. Suppose σ has c1 cycles of size 1, c2
cycles of size 2, ..., cn cycles of size n. Then the cycle monomial of σ is

z(σ) = zc1
1 zc2

2 · · · zcn
n .

The cycle indicator or cycle index of G acting on S is

Z(G, S) =
1

|G |
∑
σ:σ∈G

z(σ).

(a) What is the cycle index for the group D6 acting on the vertices of a
hexagon?

(b) What is the cycle index for the group of rotations of the cube acting
on the faces of the cube?

Problem 321. How can you compute the Orbit Enumerator of G acting on
functions from S to a finite set T from the cycle index of G acting on S? (Use t,
thought of as a variable, as the picture of an element t of T.) State and prove
the relevant theorem! This is Pólya’s and Redfield’s famous enumeration
theorem.
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Problem 322.⇒ Suppose we make a necklace by stringing 12 pieces of brightly
colored plastic tubing onto a string and fastening the ends of the string
together. We have ample supplies blue, green, red, and yellow tubing
available. Give a generating function in which the coefficient of BiGjRkYh

is the number of necklaces we can make with i blues, j greens, k reds, and
h yellows. How many terms would this generating function have if you
expanded it in terms of powers of B, G, R, and Y? Does it make sense to
do this expansion? How many of these necklaces have 3 blues, 3 greens, 2
reds, and 4 yellows?

Problem 323. What should we substitute for the variables representing col-
orings in the orbit enumerator of G acting on the set of colorings of S by a set
T of colors in order to compute the total number of orbits of G acting on the
set of colorings? What should we substitute into the variables in the cycle
index of a group G acting on a set S in order to compute the total number of
orbits of G acting on the colorings of S by a set T? Find the number of ways
to color the faces of a cube with four colors.

Problem 324.⇒ We have red, green, and blue sticks all of the same length,
with a dozen sticks of each color. We are going to make the skeleton of a
cube by taking eight identical lumps of modeling clay and pushing three
sticks into each lump so that the lumps become the vertices of the cube.
(Clearly we won’t need all the sticks!) In how many different ways could
we make our cube? How many cubes have four edges of each color? How
many have two red, four green, and six blue edges?

Problem 325.⇒ How many cubes can we make in Problem 324 if the lumps
of modelling clay can be any of four colors?

1� 2�

3

4�5�

6

Figure 6.3.2: A possible computer network.
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Problem 326.⇒ In Figure 6.3.2 we see a graph with six vertices. Suppose
we have three different kinds of computers that can be placed at the six
vertices of the graph to form a network. In how many different ways may
the computers be placed? (Two graphs are not different if we can redraw
one of the graphs so that it is identical to the other one.) This is equivalent to
permuting the vertices in some way so that when we apply the permutation
to the endpoints of the edges to get a new edge set, the new edge set is equal
to the old one. Such a permutation is called an automorphism of the graph.
Then two computer placements are the same if there is an automorphism
of the graph that carries one to the other. (h)

Problem 327.⇒ Two simple graphs on the set [n] = {1, 2, . . . , n} with edge
sets E and E′ (which we think of a sets of two-element sets for this problem)
are said to be isomorphic if there is a permutation σ of [n] which, in its
action of two-element sets, carries E to E′. We say two graphs are different if
they are not isomorphic. Thus the number of different graphs is the number
of orbits of the set of all two-element subsets of [n] under the action of the
group Sn . We can represent an edge set by its characteristic function (as in
problem 33). That is we define

χE({u , v}) =
{
1 if {u , v} ∈ E
0 otherwise.

Thus we can think of the set of graphs as a set of colorings with colors 0 and
1 of the set of all two-element subsets of [n]. The number of different graphs
with vertex set [n] is thus the number of orbits of this set of colorings under
the action of the symmetric group Sn on the set of two-element subsets of
[n]. Use this to find the number of different graphs on five vertices. (h)

6.4 Supplementary Problems
1. Show that a function from S to T has an inverse (defined on T) if and only if it
is a bĳection.

2. How many elements are in the dihedral group D3? The symmetric group S3?
What can you conclude about D3 and S3?

3. A tetrahedron is a thee dimensional geometric figure with four vertices, six
edges, and four triangular faces. Suppose we start with a tetrahedron in space
and consider the set of all permutations of the vertices of the tetrahedron that
correspond to moving the tetrahedron in space and returning it to its original
location, perhaps with the vertices in different places.
(a) Explain why these permutations form a group.
(b) What is the size of this group?
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(c) Write down in two-row notation a permutation that is not in this group.

4. Find a three-element subgroup of the group S3. Can you find a different three-
element subgroup of S3?

5. Prove true or demonstrate false with a counterexample: “In a permutation
group, (σϕ)n = σnϕn .”

6. If a group G acts on a set S, and if σ(x) = y, is there anything interesting we can
say about the subgroups (x) and (y)?

7.
(a) If a group G acts on a set S, does σ( f ) = f ◦ σ define a group action on the

functions from S to a set T? Why or why not?
(b) If a group G acts on a set S, does σ( f ) = f ◦ σ−1 define a group action on the

functions from S to a set T ? Why or why not?
(c) Is either of the possible group actions essentially the same as the action we

described on colorings of a set, or is that an entirely different action?

8. Find the number of ways to color the faces of a tetrahedron with two colors.

9. Find the number of ways to color the faces of a tetrahedron with four colors so
that each color is used.

10. Find the cycle index of the group of spatial symmetries of the tetrahedron
acting on the vertices. Find the cycle index for the same group acting on the faces.

11. Find the generating function for the number of ways to color the faces of the
tetrahedron with red, blue, green and yellow.

12.⇒ Find the generating function for the number of ways to color the faces of a cube
with four colors so that all four colors are used.

13.⇒ How many different graphs are there on six vertices with seven edges?

14.⇒ Show that if H is a subgroup of the group G, then H acts on G by σ(τ) = σ ◦ τ
for all σ in H and τ in G. What is the size of an orbit of this action? How does the
size of a subgroup of a group relate to the size of the group?



Appendix A

Relations

A.1 Relations as sets of Ordered Pairs
A.1.1 The relation of a function

Problem 328. Consider the functions from S = {−2,−1, 0, 1, 2} to T =
{1, 2, 3, 4, 5} defined by f (x) = x + 3, and g(x) = x5 − 5x3 + 5x + 3. Write
down the set of ordered pairs (x , f (x)) for x ∈ S and the set of ordered pairs
(x , g(x)) for x ∈ S. Are the two functions the same or different?

Problem 328 points out how two functions which appear to be different are
actually the same on some domain of interest to us. Most of the time when we are
thinking about functions it is fine to think of a function casually as a relationship
between two sets. In Problem 328 the set of ordered pairs you wrote down for
each function is called the relation of the function. When we want to distinguish
between the casual and the careful in talking about relationships, our casual term
will be “relationship” and our careful term will be “relation.” So relation is a
technical word in mathematics, and as such it has a technical definition. A relation
from a set S to a set T is a set of ordered pairs whose first elements are in S and
whose second elements are in T. Another way to say this is that a relation from S
to T is a subset of S × T.

A typical way to define a function f from a set S, called the domain of the
function, to a set T, called the range, is that f is a relationship between S to T that
relates one and only one member of T to each element of X. We use f (x) to stand
for the element of T that is related to the element x of S. If we wanted to make
our definition more precise, we could substitute the word “relation” for the word
“relationship” and we would have a more precise definition. For our purposes,
you can choose whichever definition you prefer. However, in any case, there is a
relation associated with each function. As we said above, the relation of a function
f : S → T (which is the standard shorthand for “ f is a function from S to T” and
is usually read as f maps S to T) is the set of all ordered pairs (x , f (x)) such that x
is in S.
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Problem 329. Here are some questions that will help you get used to the
formal idea of a relation and the related formal idea of a function. S will
stand for a set of size s and T will stand for a set of size t.

(a) What is the size of the largest relation from S to T?

(b) What is the size of the smallest relation from S to T?

(c) The relation of a function f : S → T is the set of all ordered pairs
(x , f (x)) with x ∈ S. What is the size of the relation of a function
from S to T? That is, how many ordered pairs are in the relation of a
function from S to T? (h)

(d) We say f is a one-to-one function or injection from S to T if each
member of S is related to a different element of T. How many different
elements must appear as second elements of the ordered pairs in the
relation of a one-to-one function (injection) from S to T?

(e) A function f : S → T is called an onto function or surjection if each
element of T is f (x) for some x ∈ S What is the minimum size that S
can have if there is a surjection from S to T?

Problem 330. When f is a function from S to T, the sets S and T play a big
role in determining whether a function is one-to-one or onto (as defined in
Problem 329). For the remainder of this problem, let S and T stand for the
set of nonnegative real numbers.

(a) If f : S → T is given by f (x) = x2, is f one-to-one? Is f onto?

(b) Now assume S′ is the set of all real numbers and g : S′ → T is given
by g(x) = x2. Is g one-to-one? Is g onto?

(c) Assume that T′ is the set of all real numbers and h : S → T′ is given
by h(x) = x2. Is h one-to-one? Is h onto?

(d) And if the function j : S′ → T′ is given by j(x) = x2, is j one-to-one?
Is j onto?

Problem 331. If f : S → T is a function, we say that f maps x to y as another
way to say that f (x) = y. Suppose S = T = {1, 2, 3}. Give a function from
S to T that is not onto. Notice that two different members of S have mapped
to the same element of T. Thus when we say that f associates one and only
one element of T to each element of S, it is quite possible that the one and
only one element f (1) that f maps 1 to is exactly the same as the one and
only one element f (2) that f maps 2 to.
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A.1.2 Directed graphs
We visualize numerical functions like f (x) = x2 with their graphs in Cartesian co-
ordinate systems. We will call these kinds of graphs coordinate graphs to distinguish
them from other kinds of graphs used to visualize relations that are non-numerical.

a�

b�

c�

d�

Figure A.1.1: The alphabet digraph.

In Figure A.1.1 we illustrate another kind of graph, a “directed graph” or “di-
graph” of the “comes before in alphabetical order" relation on the letters a, b, c,
and d. To draw a directed graph of a relation on a set S, we draw a circle (or dot,
if we prefer), which we call a vertex, for each element of the set, we usually label
the vertex with the set element it corresponds to, and we draw an arrow from the
vertex for a to that for b if a is related to b, that is, if the ordered pair (a , b) is in our
relation. We call such an arrow an edge or a directed edge. We draw the arrow
from a to b, for example, because a comes before b in alphabetical order. We try to
choose the locations where we draw our vertices so that the arrows capture what
we are trying to illustrate as well as possible. Sometimes this entails redrawing
our directed graph several times until we think the arrows capture the relationship
well.

We also draw digraphs for relations from a set S to a set T; we simply draw
vertices for the elements of S (usually in a row) and vertices for the elements of T
(usually in a parallel row) draw an arrow from x in S to y in T if x is related to y.
Notice that instead of referring to the vertex representing x, we simply referred to
x. This is a common shorthand. Here are some exercises just to practice drawing
digraphs.

Problem 332. Draw the digraph of the “is a proper subset of” relation on
the set of subsets of a two element set. How many arrows would you have
had to draw if this problem asked you to draw the digraph for the subsets
of a three-element set? (h)

We also draw digraphs for relations from finite set S to a finite set T; we simply
draw vertices for the elements of S (usually in a row) and vertices for the elements
of T (usually in a parallel row) and draw an arrow from x in S to y in T if x is
related to y. Notice that instead of referring to the vertex representing x, we simply
referred to x. This is a common shorthand.
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Problem 333. Draw the digraph of the relation from the set {A, M, P, S} to
the set {Sam, Mary, Pat, Ann, Polly, Sarah} given by “is the first letter of.”

Problem 334. Draw the digraph of the relation from the set {Sam, Mary,
Pat, Ann, Polly, Sarah} to the set {A, M, P, S} given by “has as its first letter.”

Problem 335. Draw the digraph of the relation on the set {Sam, Mary, Pat,
Ann, Polly, Sarah} given by “has the same first letter as.”

A.1.3 Digraphs of Functions

Problem 336. When we draw the digraph of a function f , we draw an arrow
from the vertex representing x to the vertex representing f (x). One of the
relations you considered in Problems 333 and Problem 334 is the relation of
a function.

(a) Which relation is the relation of a function?

(b) How does the digraph help you visualize that one relation is a function
and the other is not?

Problem 337. Digraphs of functions help us to visualize whether or not
they are onto or one-to-one. For example, let both S and T be the set
{−2,−1, 0, 1, 2} and let S′ and T′ be the set {0, 1, 2}. Let f (x) = 2 − |x |.

(a) Draw the digraph of the function f assuming its domain is S and its
range is T. Use the digraph to explain why or why not this function
maps S onto T.

(b) Use the digraph of the previous part to explain whether or not the
function is one-to one.

(c) Draw the digraph of the function f assuming its domain is S and its
range is T′. Use the digraph to explain whether or not the function is
onto.

(d) Use the digraph of the previous part to explain whether or not the
function is one-to-one.

(e) Draw the digraph of the function f assuming its domain is S′ and its
range is T′. Use the digraph to explain whether the function is onto.
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(f) Use the digraph of the previous part to explain whether the function
is one-to-one.

(g) Suppose the function f has domain S′ and range T. Draw the digraph
of f and use it to explain whether f is onto.

(h) Use the digraph of the previous part to explain whether f is one-to-
one.

A one-to-one function from a set X onto a set Y is frequently called a bĳection,
especially in combinatorics. Your work in Problem 337 should show you that a
digraph is the digraph of a bĳection from X to Y

• if the vertices of the digraph represent the elements of X and Y,

• if each vertex representing an element of X has one and only one arrow
leaving it, and

• each vertex representing an element of Y has one and only one arrow entering
it.

Problem 338. If we reverse all the arrows in the digraph of a bĳection f , we
get the digraph of another function g. Is g a bĳection? What is f (g(x))?
What is g( f (x))?

If f is a function from S to T, if g is a function from T to S, and if f (g(x)) = x for
each x in T and g( f (x)) = x for each x in S, then we say that g is an inverse of f
(and f is an inverse of g).

More generally, if f is a function from a set R to a set S, and g is a function from
S to T, then we define a new function f ◦ g, called the composition of f and g , by
f ◦ g(x) = f (g(x)). Composition of functions is a particularly important operatio
in subjects such as calculus, where we represent a function like h(x) =

√
x2 + 1 as

the composition of the square root function and the square and add one function
in order to use the chain rule to take the derivative of h.

The function ι (the Greek letter iota is pronounced eye-oh-ta) from a set S to
itself, given by the rule ι(x) = x for every x in S, is called the identity function on
S. If f is a function from S to T and g is a function from T to S such that g( f (x)) = x
for every x in S, we can express this by saying that g ◦ f = ι, where ι is the identity
function of S. Saying that f (g(x)) = x is the same as saying that f ◦ g = ι, where
ι stands for the identity function on T. We use the same letter for the identity
function on two different sets when we can use context to tell us on which set the
identity function is being defined.

Problem 339. If f is a function from S to T and g is a function from T to S
such that g( f (x)) = x, how can we tell from context that g ◦ f is the identity
function on S and not the identity function on T? (h)
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Problem 340. Explain why a function that has an inverse must be a bĳection.

Problem 341. Is it true that the inverse of a bĳection is a bĳection?

Problem 342. If g and h are inverse of f , then what can we say about g and
h?

Problem 343. Explain why a bĳection must have an inverse.

Since a function with an inverse has exactly one inverse g, we call g the inverse
of f . From now on, when f has an inverse, we shall denote its inverse by f −1. Thus
f ( f −1(x)) = x and f −1( f (x)) = x. Equivalenetly f ◦ f −1 = ι and f −1 ◦ f = ι.

A.2 Equivalence relations
So far we’ve used relations primarily to talk about functions. There is another kind
of relation, called an equivalence relation, that comes up in the counting problems
with which we began. In Problem 8 with three distinct flavors, it was probably
tempting to say there are 12 flavors for the first pint, 11 for the second, and 10 for
the third, so there are 12 · 11 · 10 ways to choose the pints of ice cream. However,
once the pints have been chosen, bought, and put into a bag, there is no way to tell
which is first, which is second and which is third. What we just counted is lists of
three distinct flavors—one to one functions from the set {1, 2, 3} in to the set of ice
cream flavors. Two of those lists become equivalent once the ice cream purchase
is made if they list the same ice cream. In other words, two of those lists become
equivalent (are related) if they list same subset of the set of ice cream flavors. To
visualize this relation with a digraph, we would need one vertex for each of the
12 · 11 · 10 lists. Even with five flavors of ice cream, we would need one vertex for
each of 5 ·4 ·3 = 60 lists. So for now we will work with the easier to draw question of
choosing three pints of ice cream of different flavors from four flavors of ice cream.

Problem 344. Suppose we have four flavors of ice cream, V(anilla),
C(hocolate), S(trawberry) and P(each). Draw the directed graph whose
vertices consist of all lists of three distinct flavors of the ice cream, and
whose edges connect two lists if they list the same three flavors. This graph
makes it pretty clear in how many ways we may choose 3 flavors out of four.
How many is it?
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Problem 345.⇒ Now suppose again we are choosing three distinct flavors of
ice cream out of four, but instead of putting scoops in a cone or choosing
pints, we are going to have the three scoops arranged symmetrically in a
circular dish. Similarly to choosing three pints, we can describe a selection
of ice cream in terms of which one goes in the dish first, which one goes
in second (say to the right of the first), and which one goes in third (say to
the right of the second scoop, which makes it to the left of the first scoop).
But again, two of these lists will sometimes be equivalent. Once they are
in the dish, we can’t tell which one went in first. However, there is a subtle
difference between putting each flavor in its own small dish and putting all
three flavors in a circle in a larger dish. Think about what makes the lists
of flavors equivalent, and draw the directed graph whose vertices consist
of all lists of three of the flavors of ice cream and whose edges connect two
lists that we cannot tell the difference between as dishes of ice cream. How
many dishes of ice cream can we distinguish from one another? (h)

Problem 346. Draw the digraph for Problem 38 in the special case where
we have four people sitting around the table.

In Problems 344, 345, and 346 (as well as Problems 34, 38, and 39) we can begin
with a set of lists, and say when two lists are equivalent as representations of the
objects we are trying to count. In particular, in Problems 344, 345, and 346 you
drew the directed graph for this relation of equivalence. Technically, you should
have had an arrow from each vertex (list) to itself. This is what we mean when we
say a relation is reflexive. Whenever you had an arrow from one vertex to a second,
you had an arrow back to the first. This is what we mean when we say a relation is
symmetric.

When people sit around a round table, each list is equivalent to itself: if List1
and List 2 are identical, then everyone has the same person to the right in both lists
(including the first person in the list being to the right of the last person). To see the
symmetric property of the equivalence of seating arrangements, if List1 and List2
are different, but everyone has the same person to the right when they sit according
to List2 as when they sit according to List1, then everybody better have the same
person to the right when they sit according to List1 as when they sit according to
List2.

In Problems 344, 345 and 346 there is another property of those relations you
may have noticed from the directed graph. Whenever you had an arrow from L1

to L2 and an arrow from L2 to L3, then there was an arrow from L1 to L3. This is
what we mean when we say a relation is transitive. You also undoubtedly noticed
how the directed graph divides up into clumps of mutually connected vertices.
This is what equivalence relations are all about. Let’s be a bit more precise in our
description of what it means for a relation to be reflexive, symmetric or transitive.

• If R is a relation on a set X, we say R is reflexive if (x , x) ∈ R for every x ∈ X.
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• If R is a relation on a set X, we say R is symmetric if (x , y) is in R whenever
(y , x) is in R.

• If R is a relation on a set X, we say R is transitive if whenever (x , y) is in R
and (y , z) is in R, then (x , z) is in R as well.

Each of the relations of equivalence you worked with in Problems 344, 345 and
346 had these three properties. Can you visualize the same three properties in the
relations of equivalence that you would use in Problems 34, 38, and 39? We call a
relation an equivalence relation if it is reflexive, symmetric and transitive.

After some more examples, we will see how to show that equivalence relations
have the kind of clumping property you saw in the directed graphs. In our first
example, using the notation (a , b) ∈ R to say that a is related to B is going to get
in the way. It is really more common to write aRb to mean that a is related to b.
For example, if our relation is the less than relation on {1, 2, 3}, you are much more
likely to use x < y than you are (x , y) ∈ <, aren’t you? The reflexive law then
says xRx for every x in X, the symmetric law says that if xRy, then yRx, and the
transitive law says that if xRy and yRz, then xRz.

Problem 347. For the necklace problem, Problem 43, our lists are lists of
beads. What makes two lists equivalent for the purpose of describing a
necklace? Verify explicitly that this relationship of equivalence is reflexive,
symmetric, and transitive.

Problem 348. Which of the reflexive, symmetric and transitive properties
does the < relation on the integers have?

Problem 349. A relation R on the set of ordered pairs of positive integers
that you learned about in grade school in another notation is the relation
that says (m , n) is related to (h , k) if mk = hn. Show that this relation is an
equivalence relation. In what context did you learn about this relation in
grade school? (h)

Problem 350. Another relation that you may have learned about in school,
perhaps in the guise of “clock arithmetic,” is the relation of equivalence
modulo n. For integers (positive, negative, or zero) a and b, we write a ≡ b
( n) to mean that a − b is an integer multiple of n, and in this case, we
say that a is congruent to b modulo n and write a ≡ b ( n).. Show that
the relation of congruence modulo n is an equivalence relation.
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Problem 351. Define a relation on the set of all lists of n distinct integers
chosen from {1, 2, . . . , n}, by saying two lists are related if they have the
same elements (though perhaps in a different order) in the first k places,
and the same elements (though perhaps in a different order) in the last n − k
places. Show this relation is an equivalence relation.

Problem 352. Suppose that R is an equivalence relation on a set X and for
each x ∈ X, let Cx = {y |y ∈ X and yRx}. If Cx and Cz have an element y
in common, what can you conclude about Cx and Cz (besides the fact that
they have an element in common!)? Be explicit about what property(ies)
of equivalence relations justify your answer. Why is every element of X in
some set Cx? Be explicit about what property(ies) of equivalence relations
you are using to answer this question. Notice that we might simultaneously
denote a set by Cx and Cy . Explain why the union of the sets Cx is X.
Explain why two distinct sets Cx and Cz are disjoint. What do these sets
have to do with the “clumping” you saw in the digraph of Problem 344 and
Problem 345?

In Problem 352 the sets Cx are called equivalence classes of the equivalence
relation R. You have just proved that if R is an equivalence relation of the set
X, then each element of X is in exactly one equivalence class of R. Recall that a
partition of a set X is a set of disjoint sets whose union is X. For example, {1, 3},
{2, 4, 6}, {5} is a partition of the set {1, 2, 3, 4, 5, 6}. Thus another way to describe
what you proved in Problem 352 is the following:

Theorem A.2.1. If R is an equivalence relation on X, then the set of equivalence classes of
R is a partition of X.

Since a partition of S is a set of subsets of S, it is common to call the subsets into
which we partition S the blocks of the partition so that we don’t find ourselves in
the uncomfortable position of referring to a set and not being sure whether it is the
set being partitioned or one of the blocks of the partition.

Problem 353. In each of Problems 38, Problem 39, Problem 43, Problem 344,
and Problem 345, what does an equivalence class correspond to? (Five
answers are expected here.) (h)

Problem 354. Given the partition {1, 3}, {2, 4, 6}, {5} of the set
{1, 2, 3, 4, 5, 6}, define two elements of {1, 2, 3, 4, 5, 6} to be related if they
are in the same part of the partition. That is, define 1 to be related to 3 (and 1
and 3 each related to itself), define 2 and 4, 2 and 6, and 4 and 6 to be related
(and each of 2, 4, and 6 to be related to itself), and define 5 to be related to
itself. Show that this relation is an equivalence relation.
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Problem 355. Suppose P = {S1 , S2 , S3 , . . . , Sk} is a partition of S. Define
two elements of S to be related if they are in the same set Si , and otherwise
not to be related. Show that this relation is an equivalence relation. Show
that the equivalence classes of the equivalence relation are the sets Si .

In Problem 353 you just proved that each partition of a set gives rise to an
equivalence relation whose classes are just the parts of the partition. Thus in
Problem 352 and Problem 353 you proved the following Theorem.

Theorem A.2.2. A relation R is an equivalence relation on a set S if and only if S may be
partitioned into sets S1, S2, . . . , Sn in such a way that x and y are related by R if and only
if they are in the same block Si of the partition.

In Problems 344, Problem 345, Problem 38 and Problem 43 what we were doing
in each case was counting equivalence classes of an equivalence relation. There
was a special structure to the problems that made this somewhat easier to do. For
example, in Problem 344, we had 4 · 3 · 2 = 24 lists of three distinct flavors chosen
from V, C, S, and P. Each list was equivalent to 3 · 2 · 1 = 3! = 6 lists, including
itself, from the point of view of serving 3 small dishes of ice cream. The order in
which we selected the three flavors was unimportant. Thus the set of all 4 · 3 · 2
lists was a union of some number n of equivalence classes, each of size 6. By the
product principle, if we have a union of n disjoint sets, each of size 6, the union
has 6n elements. But we already knew that the union was the set of all 24 lists of
three distinct letters chosen from our four letters. Thus we have 6n = 24, or n = 4
equivalence classes.

In Problem 345 there is a subtle change. In the language we adopted for seating
people around a round table, if we choose the flavors V, C, and S, and arrange them
in the dish with C to the right of V and S to the right of C, then the scoops are in
different relative positions than if we arrange them instead with S to the right of
V and C to the right of S. Thus the order in which the scoops go into the dish is
somewhat important—somewhat, because putting in V first, then C to its right and
S to its right is the same as putting in S first, then V to its right and C to its right. In
this case, each list of three flavors is equivalent to only three lists, including itself,
and so if there are n equivalence classes, we have 3n = 24, so there are 24/3 = 8
equivalence classes.

Problem 356. If we have an equivalence relation that divides a set with k
elements up into equivalence classes each of size m, what is the number n
of equivalence classes? Explain why.

Problem 357. In Problem 347, what is the number of equivalence classes?
Explain in words the relationship between this problem and the Problem 39.
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Problem 358. Describe explicitly what makes two lists of beads equivalent
in Problem 43 and how Problem 356 can be used to compute the number of
different necklaces.

Problem 359. What are the equivalence classes (write them out as sets of
lists) in Problem 45, and why can’t we use Problem 356 to compute the
number of equivalence classes?

In Problem 356 you proved our next theorem. In Chapter 1 (Problem 42) we
discovered and stated this theorem in the context of partitions and called it the
Quotient Principle

Theorem A.2.3. If an equivalence relation on a set S size k has n equivalence classes each
of size m, then the number of equivalence classes is k/m.
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Appendix B

Mathematical Induction

B.1 The Principle of Mathematical Induction
B.1.1 The ideas behind mathematical induction
There is a variant of one of the bĳections we used to prove the Pascal Equation
that comes up in counting the subsets of a set. In the next problem it will help us
compute the total number of subsets of a set, regardless of their size. Our main
goal in this problem, however, is to introduce some ideas that will lead us to one
of the most powerful proof techniques in combinatorics (and many other branches
of mathematics), the principle of mathematical induction.

Problem 360.

(a) Write down a list of the subsets of {1, 2}. Don’t forget the empty set!
Group the sets containing containing 2 separately from the others.

(b) Write down a list of the subsets of {1, 2, 3}. Group the sets containing
3 separately from the others.

(c) Look for a natural way to match up the subsets containing 2 in Part a
with those not containing 2. Look for a way to match up the subsets
containing 3 in Part b containing 3 with those not containing 3.

(d) On the basis of the previous part, you should be able to find a bĳection
between the collection of subsets of {1, 2, . . . , n} containing n and
those not containing n. (If you are having difficulty figuring out the
bĳection, try rethinking Parts a and b, perhaps by doing a similar
exercise with the set {1, 2, 3, 4}.) Describe the bĳection (unless you are
very familiar with the notation of sets, it is probably easier to describe
to describe the function in words rather than symbols) and explain
why it is a bĳection. Explain why the number of subsets of {1, 2, . . . , n}
containing n equals the number of subsets of {1, 2, . . . , n − 1}.
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(e) Parts a and b suggest strongly that the number of subsets of a n-element
set is 2n . In particular, the empty set has 20 subsets, a one-element
set has 21 subsets, itself and the empty set, and in Parts a and b we
saw that two-element and three-element sets have 22 and 23 subsets
respectively. So there are certainly some values of n for which an
n-element set has 2n subsets. One way to prove that an n-element
set has 2n subsets for all values of n is to argue by contradiction.
For this purpose, suppose there is a nonnegative integer n such that
an n-element set doesn’t have exactly 2n subsets. In that case there
may be more than one such n. Choose k to be the smallest such n.
Notice that k − 1 is still a positive integer, because k can’t be 0, 1, 2, or
3. Since k was the smallest value of n we could choose to make the
statement “An n-element set has 2n subsets” false, what do you know
about the number of subsets of a (k − 1)-element set? What do you
know about the number of subsets of the k-element set {1, 2, . . . , k}
that don’t contain k? What do you know about the number of subsets
of {1, 2, . . . , k} that do contain k? What does the sum principle tell
you about the number of subsets of {1, 2, . . . , k}? Notice that this
contradicts the way in which we chose k, and the only assumption
that went into our choice of k was that “there is a nonnegative integer
n such that an n-element set doesn’t have exactly 2n subsets." Since
this assumption has led us to a contradiction, it must be false. What
can you now conclude about the statement “for every nonnegative
integer n, an n-element set has exactly 2n subsets?"

Problem 361. The expression

1 + 3 + 5 + · · ·+ 2n − 1

is the sum of the first n odd integers. Experiment a bit with the sum for the
first few positive integers and guess its value in terms of n. Now apply the
technique of Problem 360 to prove that you are right. (h)

In Problems 360 and 361 our proofs had several distinct elements. We had a
statement involving an integer n. We knew the statement was true for the first
few nonnegative integers in Problem 360 and for the first few positive integers in
Problem 361. We wanted to prove that the statement was true for all nonnegative
integers in Problem 360 and for all positive integers in Problem 361. In both cases
we used the method of proof by contradiction; for that purpose we assumed that
there was a value of n for which our formula wasn’t true. We then chose k to be
the smallest value of n for which our formula wasn’t true. This meant that when
n was k − 1, our formula was true, (or else that k − 1 wasn’t a nonnegative integer
in Problem 360 or that k − 1 wasn’t a positive integer in Problem 361). What we
did next was the crux of the proof. We showed that the truth of our statement for
n = k − 1 implied the truth of our statement for n = k. This gave us a contradiction
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to the assumption that there was an n that made the statement false. In fact, we
will see that we can bypass entirely the use of proof by contradiction. We used it
to help you discover the central ideas of the technique of proof by mathematical
induction.

The central core of mathematical induction is the proof that the truth of a
statement about the integer n for n = k − 1 implies the truth of the statement for
n = k. For example, once we know that a set of size 0 has 20 subsets, if we have
proved our implication, we can then conclude that a set of size 1 has 21 subsets,
from which we can conclude that a set of size 2 has 22 subsets, from which we can
conclude that a set of size 3 has 23 subsets, and so on up to a set of size n having 2n

subsets for any nonnegative integer n we choose. In other words, although it was
the idea of proof by contradiction that led us to think about such an implication,
we can now do without the contradiction at all. What we need to prove a statement
about n by this method is a place to start, that is a value b of n for which we
know the statement to be true, and then a proof that the truth of our statement for
n = k − 1 implies the truth of the statement for n = k whenever k > b.

B.1.2 Mathematical induction
The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b
2. Show that the truth of the statement for n = k −1 implies the truth

of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us return to Problem 360. The statement we wish to prove is the
statement that “A set of size n has 2n subsets.”

Our statement is true when n = 0, because a set of size 0 is the empty set
and the empty set has 1 = 20 subsets. (This step of our proof is called a
base step.) Now suppose that k > 0 and every set with k − 1 elements
has 2k−1 subsets. Suppose S = {a1 , a2 , . . . ak} is a set with k elements.
We partition the subsets of S into two blocks. Block B1 consists of the
subsets that do not contain an and block B2 consists of the subsets that
do contain an . Each set in B1 is a subset of {a1 , a2 , . . . ak−1}, and each
subset of {a1 , a2 , . . . ak−1} is in B1. Thus B1 is the set of all subsets of
{a1 , a2 , . . . ak−1}. Therefore by our assumption in the first sentence of
this paragraph, the size of B1 is 2k−1. Consider the function from B2

to B1 which takes a subset of S including an and removes an from it.
This function is defined on B2, because every set in B2 contains an . This
function is onto, because if T is a set in B1, then T ∪ {ak} is a set in B2

which the function sends to T. This function is one-to-one because if V
and W are two different sets in B2, then removing ak from them gives
two different sets in B1. Thus we have a bĳection between B1 and B2,
so B1 and B2 have the same size. Therefore by the sum principle the
size of B1 ∪ B2 is 2k−1 + 2k−1 = 2k . Therefore S has 2k subsets. This
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shows that if a set of size k − 1 has 2k−1 subsets, then a set of size k has
2k subsets. Therefore by the principle of mathematical induction, a set
of size n has 2n subsets for every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis. In an
inductive proof we always make an inductive hypothesis as part of proving that
the truth of our statement when n = k − 1 implies the truth of our statement when
n = k. The last paragraph itself is called the inductive step of our proof. In an
inductive step we derive the statement for n = k from the statement for n = k − 1,
thus proving that the truth of our statement when n = k − 1 implies the truth of
our statement when n = k. The last sentence in the last paragraph is called the
inductive conclusion. All inductive proofs should have a base step, an inductive
hypothesis, an inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our base step
was the case n = 0, or in other words, we had b = 0. However, in other proofs, b
could be any integer, positive, negative, or 0. Second, our proof that the truth of our
statement for n = k − 1 implies the truth of our statement for n = k required that
k be at least 1, so that there would be an element ak we could take away in order
to describe our bĳection. However, condition (2) of the principle of mathematical
induction only requires that we be able to prove the implication for k > 0, so we
were allowed to assume k > 0.

Problem 362. Use mathematical induction to prove your formula from
Problem 361.

B.1.3 Proving algebraic statements by induction

Problem 363. Use mathematical induction to prove the well-known for-
mula that for all positive integers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Problem 364. Experiment with various values of n in the sum

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n · (n + 1)
=

n∑
i=1

1

i · (i + 1)
.

Guess a formula for this sum and prove your guess is correct by induction.

Problem 365. For large values of n, which is larger, n2 or 2n? Use mathe-
matical induction to prove that you are correct. (h)
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Problem 366. What is wrong with the following attempt at an inductive
proof that all integers in any consecutive set of n integers are equal for every
positive integer n? For an arbitrary integer i, all integers from i to i are equal,
so our statement is true when n = 1. Now suppose k > 1 and all integers in
any consecutive set of k −1 integers are equal. Let S be a set of k consecutive
integers. By the inductive hypothesis, the first k − 1 elements of S are equal
and the last k − 1 elements of S are equal. Therefore all the elements in the
set S are equal. Thus by the principle of mathematical induction, for every
positive n, every n consecutive integers are equal. (h)

B.1.4 Strong Induction
One way of looking at the principle of mathematical induction is that it tells us
that if we know the “first” case of a theorem and we can derive each other case of
the theorem from a smaller case, then the theorem is true in all cases. However
the particular way in which we stated the theorem is rather restrictive in that
it requires us to derive each case from the immediately preceding case. This
restriction is not necessary, and removing it leads us to a more general statement
of the principal of mathematical induction which people often call the strong
principle of mathematical induction. It states:

In order to prove a statement about an integer n if we can

1. prove our statement when n = b and
2. prove that the statements we get with n = b, n = b+1, . . . n = k−1

imply the statement with n = k,

then our statement is true for all integers n ≥ b.

Problem 367. What postage do you think we can make with five and six
cent stamps? Is there a number N such that if n ≥ N , then we can make n
cents worth of postage?

You probably see that we can make n cents worth of postage as long as n is at least
20. However you didn’t try to make 26 cents in postage by working with 25 cents;
rather you saw that you could get 20 cents and then add six cents to that to get
26 cents. Thus if we want to prove by induction that we are right that if n ≥ 20,
then we can make n cents worth of postage, we are going to have to use the strong
version of the principle of mathematical induction.

We know that we can make 20 cents with four five-cent stamps. Now we let k
be a number greater than 20, and assume that it is possible to make any amount
between 20 and k − 1 cents in postage with five and six cent stamps. Now if k is
less than 25, it is 21, 22, 23, or 24. We can make 21 with three fives and one six.
We can make 22 with two fives and two sixes, 23 with one five and three sixes, and
24 with four sixes. Otherwise k − 5 is between 20 and k − 1 (inclusive) and so by
our inductive hypothesis, we know that k − 5 cents can be made with five and six
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cent stamps, so with one more five cent stamp, so can k cents. Thus by the (strong)
principle of mathematical induction, we can make n cents in stamps with five and
six cent stamps for each n ≥ 20.

Some people might say that we really had five base cases, n = 20, 21, 22, 23, and
24, in the proof above and once we had proved those five consecutive base cases,
then we could reduce any other case to one of these base cases by successively
subtracting 5. That is an appropriate way to look at the proof. A logician would
say that it is also the case that, for example, by proving we could make 22 cents, we
also proved that if we can make 20 cents and 21 cents in stamps, then we could also
make 22 cents. We just didn’t bother to use the assumption that we could make 20
cents and 21 cents! So long as one point of view or the other satisfies you, you are
ready to use this kind of argument in proofs.

Problem 368. A number greater than one is called prime if it has no factors
other than itself and one. Show that each positive number is either a prime
or a power of a prime or a product of powers of prime numbers.

Problem 369. Show that the number of prime factors of a positive number
n ≥ 2 is less than or equal to 2 n. (If a prime occurs to the kth power in a
factorization of n, you can consider that power as k prime factors.) (There
is a way to do this by induction and a way to do it without induction. It
would be ideal to find both ways.)

Problem 370. One of the most powerful statements in elementary number
theory is Euclid’s Division Theorem.a This states that if m and n are positive
integers, then there are unique nonnegative intergers q and r with 0 ≤ r < n,
such that m = nq + r. The number q is called the quotient and the number
r is called the remainder. In computer science it is common to denote r by
m n. In elementary school you learned how to use long division to
find q and r. However, it is unlikely that anyone ever proved for you that
for any pair of positive intgers, m and n, there is such a pair of nonnegative
numbers q and r. You now have the tools needed to prove this. Do so. (h)

aIn a curious twist of language, mathematicians have long called The Division Algorithm or
Euclid’s Division Algorithm. However as computer science has grown in importance, the word
algorithm has gotten a more precise definition: an algorithm is now a method to do something.
There is a method (in fact there are more than one) to get the q and r that Euclid’s Division
Theorem gives us, and computer scientists would call these methods algorithms. Your author
has chosen to break with mathematical tradition and restrict his use of the word algorithm to
the more precise interpretation as a computer scientist probably would. We aren’t giving a
method here, so this is why the name used here is “Euclid’s Division Theorem.”



Appendix C

Exponential Generating
Functions

C.1 Indicator Functions
When we introduced the idea of a generating function, we said that the formal sum

n∑
i=0

ai xi

may be thought of as a convenient way to keep track of the sequence ai . We then did
quite a few examples that showed how combinatorial properties of arrangements
counted by the coefficients in a generating function could be mirrored by algebraic
properties of the generating functions themselves. The monomials xi are called
indicator polynomials. (They indicate the position of the coefficient ai .) One
example of a generating function is given by

(1 + x)n =
∞∑

i=0

(
n
i

)
xi .

Thus we say that (1+ x)n is the generating function for the binomial coefficients
(n

i ). The notation tells us that we are assuming that only i varies in the sum on the
right, but that the equation holds for each fixed integer n. This is implicit when
we say that (1 + x)n is the generating function for (n

i ), because we haven’t written
i anywhere in (1 + x)n , so it is free to vary.

Another example of a generating function is given by

xn =
∞∑

i=0

s(n , i)xi .

Thus we say that xn is the generating function for the Stirling numbers of the
first kind, s(n , i). There is a similar equation for Stirling numbers of the second
kind, namely

xn =
∞∑

i=0

S(n , i)xi .
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However with our previous definition of generating functions, this equation
would not give a generating function for the Stirling numbers of the second kind,
because S(n , i) is not the coefficient of xi . If we were willing to consider the falling
factorial powers xi as indicator polynomials, then we could say that xn is the
generating function for the numbers S(n , i) relative to these indicator polynomials.
This suggests that perhaps different sorts of indicator polynomials go naturally
with different sequences of numbers.

The binomial theorem gives us yet another example.

Problem 371.◦ Write (1+x)n as a sum of multiples of xi

i! rather than as a sum
of multiples of xi .

This example suggests that we could say that (1+ x)n is the generating function
for the falling factorial powers ni relative to the indicator polynomials xi

i! . In
general, a sequence of polynomials is called a family of indicator polynomials if
there is one polynomial of each nonnegative integer degree in the sequence. Those
familiar with linear algebra will recognize that this says that a family of indicator
polynomials form a basis for the vector space of polynomials. This means that each
polynomial way can be expressed as a sum of numerical multiples of indicator
polynomials in one and only one way. One could use the language of linear algebra
to define indicator polynomials in an even more general way, but a definition in
such generality would not be useful to us at this point.

C.2 Exponential Generating Functions
We say that the expression

∑∞
i=0 ai

xi

i! is the exponential generating function for the
sequence ai . It is standard to use EGF as a shorthand for exponential generating
function. In this context we call the generating function

∑n
i=0 ai xi that we originally

studied the ordinary generating function for the sequence ai . You can see why
we use the term exponential generating function by thinking about the exponential
generating function (EGF) for the all ones sequence,

∞∑
i=0

1
xi

i!
=

∞∑
i=0

xi

i!
= ex ,

which we also denote by (x). Recall from calculus that the usual definition of
ex or (x) involves limits at least implicitly. We work our way around that by
defining ex to be the power series

∑∞
i=0

xi

i! .

Problem 372.◦ Find the EGF (exponential generating function) for the se-
quence an = 2n . What does this say about the EGF for the number of
subsets of an n-element set?
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Problem 373.◦ Find the EGF (exponential generating function) for the num-
ber of ways to paint the n streetlight poles that run along the north side of
Main Street in Anytown, USA using four colors.

Problem 374. For what sequence is ex−e−x

2 = x the EGF (exponential
generating function)?

Problem 375.· For what sequence is ( 1
1−x ) the EGF? ( (y) stands for the

natural logarithm of y. People often write (y) instead.) Hint: Think of
the definition of the logarithm as an integral, and don’t worry at this stage
whether or not the usual laws of calculus apply, just use them as if they do!
We will then define (1 − x) to be the power series you get. a

a It is possible to define the derivatives and integrals of power series by the formulas

d
dx

∞∑
i=0

bi xi =
∞∑

i=1

ibi xi−1

and ∫ x

0

∞∑
i=0

bi xi =
∞∑

i=0

bi
i + 1

xi+1

rather than by using the limit definitions from calculus. It is then possible to prove that the
sum rule, product rule, etc. apply. (There is a little technicality involving the meaning of
composition for power series that turns into a technicality involving the chain rule, but it
needn’t concern us at this time.)

Problem 376.· What is the EGF for the number of permutations of an n-
element set?

Problem 377.⇒ · What is the EGF for the number of ways to arrange n people
around a round table? Try to find a recognizable function represented by
the EGF. Notice that we may think of this as the EGF for the number of
permutations on n elements that are cycles. (h)

Problem 378.⇒ · What is the EGF
∑∞

n=0 p2n
x2n

(2n)! for the number of ways p2n to
pair up 2n people to play a total of n tennis matches (as in Problems 12 and
44)? (h)
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Problem 379.◦ What is the EGF for the sequence 0, 1, 2, 3, . . .? You may think
of this as the EFG for the number of ways to select one element from an n
element set. What is the EGF for the number of ways to select two elements
from an n-element set?

Problem 380.· What is the EGF for the sequence 1, 1, . . . , 1, . . .? Notice that
we may think of this as the EGF for the number of identity permutations
on an n-element set, which is the same as the number of permutations of
n elements that are products of 1-cycles, or as the EGF for the number of
ways to select an n-element set (or, if you prefer, an empty set) from an n-
element set. As you may have guessed, there are many other combinatorial
interpretations we could give to this EGF.

Problem 381.◦ What is the EGF for the number of ways to select n distinct
elements from a one-element set? What is the EGF for the number of ways
to select a positive number n of elements from a one element set? Hint:
When you get the answer you will either say “of course,” or “this is a silly
problem.” (h)

Problem 382.· What is the EGF for the number of partitions of a k-element
set into exactly one block? (Hint: is there a partition of the empty set into
exactly one block?)

Problem 383.· What is the EGF for the number of ways to arrange k books
on one shelf (assuming they all fit)? What is the EGF for the number of
ways to arrange k books on a fixed number n of shelves, assuming that all
the books can fit on any one shelf? (Remember Problem 122.)

C.3 Applications to recurrences.
We saw that ordinary generating functions often play a role in solving recurrence
relations. We found them most useful in the constant coefficient case. Exponential
generating functions are useful in solving recurrence relations where the coeffi-
cients involve simple functions of n, because the n! in the denominator can cancel
out factors of n in the numerator.
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Problem 384.◦ Consider the recurrence an = nan−1+n(n−1). Multiply both
sides by xn

n! , and sum from n = 2 to ∞. (Why do we sum from n = 2 to
infinity instead of n = 1 or n = 0?) Letting y =

∑∞
i=0 ai xi , show that the

left-hand side of the equation is y − a0 − a1x. Express the right hand side in
terms of y, x, and ex . Solve the resulting equation for y and use the result
to get an equation for an . (A finite summation is acceptable in your answer
for an .)

Problem 385.⇒ · The telephone company in a city has n subscribers. Assume
a telephone call involves exactly two subscribers (that is, there are no calls to
outside the network and no conference calls), and that the configuration of
the telephone network is determined by which pairs of subscribers are talk-
ing. Notice that we may think of a configuration of the telephone network
as a permutation whose cycle decomposition consists entirely of one-cycles
and two-cycles, that is, we may think of a configuration as an involution in
the symmetric group Sn .

(a) Give a recurrence for the number cn of configurations of the network.
(Hint: Person n is either on the phone or not.)

(b) What are c0 and c1?

(c) What are c2 through c6?

Problem 386.⇒ · Recall that a derangement of [n] is a permutation of [n] that
has no fixed points, or equivalently is a way to pass out n hats to their n
different owners so that nobody gets the correct hat. Use dn to stand for
the number of derangements of [n]. We can think of derangement of [n] as
a list of 1 through n so that i is not in the ith place for any n. Thus in a
derangement, some number k different from n is in position n. Consider
two cases: either n is in position k or it is not. Notice that in the second case,
if we erase position n and replace n by k, we get a derangement of [n − 1].
Based on these two cases, find a recurrence for dn . What is d1? What is d2?
What is d0? What are d3 through d6?

C.3.1 Using calculus with exponential generating functions

Problem 387.⇒ · Your recurrence in Problem 385 should be a second order
recurrence.

(a) Assuming that the left hand side is cn and the right hand side involves
cn−1 and cn−2, decide on an appropriate power of x divided by an ap-
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propriate factorial by which to multiply both sides of the recurrence.
Using the fact that the derivative of xn

n! is xn−1
(n−1)! , write down a differen-

tial equation for the EGF T(x) =
∑∞

i=0 ci
xi

i! . Note that it makes sense
to substitute 0 for x in T(x). What is T(0)? Solve your differential
equation to find an equation for T(x).

(b) Use your EGF to compute a formula for cn . (h)

Problem 388.⇒ · Your recurrence in Problem 386 should be a second order
recurrence.

(a) Assuming that the left-hand side is dn and the right hand side involves
dn−1 and dn−2, decide on an appropriate power of x divided by an ap-
propriate factorial by which to multiply both sides of the recurrence.
Using the fact that the derivative of xn

n! is xn−1
(n−1)! , write down a differen-

tial equation for the EGF D(x) =
∑∞

i=0 di
xi

i! . What is D(0)? Solve your
differential equation to find an equation for D(x).

(b) Use the equation you found for D(x) to find an equation for dn . Com-
pare this result with the one you computed by inclusion and exclusion.

C.4 The Product Principle for EGFs
One of our major tools for ordinary generating functions was the product principle.
It is thus natural to ask if there is a product principle for exponential generating
functions. In Problem 383 you likely found that the EGF for the number of ways
of arranging n books on one shelf was exactly the same as the EGF for the number
of permutations of [n], namely 1

1−x or (1 − x)−1. Then using our formula from
Problem 122 and the generating function for multisets, you probably found that
the EGF for number of ways of arranging n books on some fixed number m of
bookshelves was (1− x)−m . Thus the EGF for m shelves is a product of m copies of
the EGF for one shelf.

Problem 389.◦ In Problem 373 what would the exponential generating func-
tion have been if we had asked for the number of ways to paint the poles
with just one color of paint? With two colors of paint? What is the rela-
tionship between the EGF for painting the n poles with one color of paint
and the EGF for painting the n poles with four colors of paint? What is the
relationship between the EGF for painting the n poles with two colors of
paint and the EGF for painting the poles with four colors of paint?

In Problem 385 you likely found that the EGF for the number of network con-
figurations with n customers was ex+x2/2 = ex · ex2/2. In Problem 380 you saw
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that the generating function for the number of permutations on n elements that
are products of one cycles was ex , and in Problem 378 you likely found that the
EGF for the number of tennis pairings of 2n people, or equivalently, the number of
permutations of 2n objects that are products of n two-cycles is ex2/2.

Problem 390.· What can you say about the relationship among the EGF for
the number of permutations that are products of disjoint two-cycles and
one-cycles, i.e., are involutions, the exponential generating function for the
number of permutations that are the product of disjoint two-cycles only
and the generating function for the number of permutations that are the
product of disjoint one cycles only (these are identity permutations on their
domain)?

In Problem 388 you likely found that the EGF for the number of permutations
of [n] that are derangements is e−x

1−x . But every permutation is a product of derange-
ments and one cycles, because the permutation that sends i to i is a one-cycle, so
that when you factor a permutation as a product of disjoint cycles, the cycles of
size greater than one multiply together to give a derangement, and the elements
not moved by the permutation are one-cycles.

Problem 391.· If we multiply the EGF for derangements times the EGF for
the number of permutations whose cycle decompositions consist of one-
cycles only, what EGF do we get? for what set of objects have we found the
EGF? (h)

We now have four examples in which the EGF for a sequence or a pair of objects
is the product of the EGFs for the individual objects making up the sequence or
pair.

Problem 392.· What is the coefficient of xn

n! in the product of two EGFs∑∞
i=0 ai

xi

i! and
∑∞

j=0 b j
x j

j! ? (A summation sign is appropriate in your an-
swer.) (h)

In the case of painting streetlight poles in Problem 389, let us examine the
relationship between the EGF for painting poles with two colors, the EGF for
painting the poles with three colors, and the EGF for painting poles with five
colors, e5x . To be specific, the EGF for painting poles red and white is e2x and the
EGF for painting poles blue, green, and yellow is e3x . To decide how to paint poles
with red, white, blue, green, and yellow, we can decide which set of poles is to
be painted with red and white, and which set of poles is to be painted with blue,
green, and yellow. Notice that the number of ways to paint a set of poles with red
and white depends only on the size of that set, and the number of ways to paint a
set of poles with blue, green, and yellow depends only on the size of that set.
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Problem 393.· Suppose that ai is the number of ways to paint a set of i poles
with red and white, and b j is the number of ways to paint a set of j poles
with blue, green, and yellow. In how many ways may we take a set N of n
poles, divide it up into two sets I and J (using i to stand for the size of I and
j to stand for the size of the set J, and allowing i and j to vary) and paint the
poles in I red and white and the poles in J blue, green, and yellow? (Give
your answer in terms of ai and b j . Don’t figure out formulas for ai and b j to
use in your answer; that will make it harder to get the point of the problem!)
How does this relate to Problem 392?

Problem 393 shows that the formula you got for the coefficient of xn

n! in the
product of two EGFs is the formula we get by splitting a set N of poles into
two parts and painting the poles in the first part with red and white and the
poles in the second part with blue, green, and yellow. More generally, you could
interpret your result in Problem 392 to say that the coefficient of xn

n! in the product∑∞
i=0 ai

xi

i!
∑∞

j=0 b j
x j

j! of two EGFs is the sum, over all ways of splitting a set N of size
n into an ordered pair of disjoint sets I and J, of the product a |I |b | J | .

There seem to be two essential features that relate to the product of exponential
generating functions. First, we are considering structures that consist of a set and
some additional mathematical construction on or relationship among the elements
of that set. For example, our set might be a set of light poles and the additional
construction might be a coloring function defined on that set. Other examples of
additional mathematical constructions or relationships on a set could include a
permutation of that set; in particular an involution or a derangement, a partition
of that set, a graph on that set, a connected graph on that set, an arrangement of
the elements of that set around a circle, or an arrangement of the elements of that
set on the shelves of a bookcase. In fact a set with no additional construction or
arrangement on it is also an example of a structure. Its additional construction is the
empty set! When a structure consists of the set S plus the additional construction,
we say the structure uses S. What all the examples we have mentioned in our earlier
discussion of exponential generating functions have in common is that the number
of structures that use a given set is determined by the size of that set. We will call a
family F of structures a species of structures on subsets of a set X if structures are
defined on finite subsets of X and if the number of structures in the family using a
finite set S is finite and is determined by the size of S (that is, if there is a bĳection
between subsets S and T of X, the number of structures in the family that use S
equals the number of structures in the family that use T). We say a structure is an
F -structure if it is a member of the family F .

Problem 394.· In Problem 383, why is the family of arrangements of set of
books on a single shelf (assuming they all fit) a species?
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Problem 395.· In Problem 385, why is the family of people actually making
phone calls (assuming nobody is calling outside the telephone network) at
any given time, with the added relationship of who is calling whome, a
species? Why is the family of sets of people who are not using their phones
a species (with no additional construction needed)?

The second essential feature of our examples of products of EGFs is that prod-
ucts of EGFs seem to count structures on ordered pairs of two disjoint sets (or more
generally on k-tuples of mutually disjoint sets). For example, we can determine
a five coloring of a set S by partitioning it in all possible ways into two sets and
coloring the first set in the pair with our first two colors and our second pair with
the last three colors. Or we can partition our set in all possible ways into five parts
and color part i with our ith color. We don’t have to do the same thing to each
part of our partition; for example, we could define a derangement on one part and
an identity permutation on the other; this defines a permutation on the set we are
partitioning, and we have already noted that every permutation arises in this way.

Our combinatorial interpretation of EGFs will involve assuming that the coeffi-
cient of xi

i! counts the number of structures on a particular set of of size i in a species
of structures on subsets of a set X. Thus in order to give an interpretation of the
product of two EGFs we need to be able to think of ordered pairs of structures on
disjoint sets or k-tuples of structures on disjoint sets as structures themselves. Thus
given a structure on a set S and another structure on a disjoint set T, we define the
ordered pair of structures (which is a mathematical construction!) to be a structure
on the set S ∪T. We call this a pair structure on S ∪T. We can get many structures
on a set S ∪ T in this way, because S ∪ T can be divided into many other pairs of
disjoint sets. In particular, the set of pair structures whose first structure comes
from F and whose second element comes from G is denoted by F · G.

Problem 396. Show that if F and G are species of structures on subsets of
a set X, then the pair of structures of F · G for a species of structures

Given a species F of structures, the number of structures using any particular
set of size i is the same as the number of structures in the family using any other
set of size i. We can thus define the exponential generating function (EGF) for the
family as the power series

∑∞
i=1 ai

xi

i! , where ai is the number of structures of F that
use one particular set of size i. In Problems 372, 373, 376, 377, 378, 380, 382, 383,
387, and 388, we were computaing EGFs for species of subsets of some set.

Problem 397. If F and G are species of subsets of X, how is the EGF for
F · G related to the EGFs for F and G? Prove you are right. (h)
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Problem 398. Without giving the proof, how can you compute the EGF f (x)
for the number of structures using a set of size n in the species F1 · F2 · · · · · Fk
of structures on k-tuples of subsets of X from the EGFs fi(x) for Fi for each
i from 1 to k? (Here we are using the natural extension of the idea of the
pair of structures to the idea of a k-tuple structure.)

Theorem C.4.1. If F1 , F2 , . . . , Fn are species of subsets of the set X and Fi has EGF fi(x),
then the family of k-tuple structures F1 · F2 · · · · · Fn has EGF

∏n
i=1 fi(x).

We call Theorem C.4.1 the product principle for exponential generating func-
tions. We give two corollaries; the proof of the second is not immediate though
not particular difficult.

Corollary C.4.2. If F is a species of structures on subsets of X and f (x0) is the EGF
for F , then f (x)k is the EGF for the k-tuple structure on k-tuples of F -structures using
disjoint subsets of X.

Our next corollary uses the idea of a k-set structure. Suppose we have a species
F of structures on nonempty subsets of X, that is, a species of structures which
assigns no structures to the empty set. Then we can define a new species F (k) of
structures, called “k-set structures,” using nonempty subsets of X. Given a fixed
positive integer k, a k-set structure on a subset Y of X consists of a k-element
set of nonempty disjoint subsets of X whose union is Y and an assignment of an
F -structure to each of the disjoint subsets. This is a species on the set of subsets of
X; the subset used by a k-set structure is the union of the sets of the structure. To
recapitulate, the set of k-set structures on a subset Y of X is the set of all possible
assignments of F -structures to k nonempty disjoint sets whose union is Y. (You
can also think of the k-set structures as a family of structures defined on blocks of
partitions of subsets of X into k blocks.)

Corollary C.4.3. If F is a species of structures on nonempty subsets of X and f (x) is the
EGF for F , then for each positive integer k, f (x)k

k! is the EGF for the family F (k) of k-set
structures on subsets of X

Problem 399. Prove Corollary C.4.3. (h)

Problem 400.· Use the product principle for EGFs to explain the results of
Problems 390 and Problem 391.

Problem 401.· Use the general product principle for EGFs or one of its corol-
laries to explain the relationship between the EGF for painting streetlight
poles in only one color and the EGF for painting streetlight poles in 4 colors
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in Problems 373 and Problem 389. What is the EGF for the number pn of
ways to paint n streetlight poles with some fixed number k of colors of paint.

Problem 402.· Use the general product principle for EGFs or one of its corol-
laries to explain the relationship between the EGF for arranging books on
one shelf and the EGF for arranging books on n shelves in Problem 383.

Problem 403.⇒ (Optional) Our very first example of exponential generating
functions used the binomial theorem to show that the EGF for k-element
permutations of an n element set is (1+ x)n . Use the EGF for k-element per-
mutations of a one-element set and the product principle to prove the same
thing. Hint: Review the alternate definition of a function in Section 3.1.2. (h)

Problem 404. What is the EGF for the number of ways to paint n streetlight
poles red, white blue, green and yellow, assuming an even number of poles
must be painted green and an even number of poles must be painted yellow?
Give a formula for the number of ways to paint n poles. (Don’t forget the
factorial!) (h)

Problem 405.⇒ · What is the EGF for the number of functions from an n-
element set onto a one-element set? (Can there be any functions from the
empty set onto a one-element set?) What is the EGF for the number cn of
functions from an n-element set onto a k element set (where k is fixed)? Use
this EGF to find an explicit expression for the number of functions from a
k-element set onto an n-element set and compare the result with what you
got by inclusion and exclusion.

Problem 406.⇒ · In Problem 142 You showed that the Bell Numbers Bn satisfy
the equation Bn+1 =

∑n
k=0 (

n
k )Bn−k (or a similar equation for Bn .) Multiply

both sides of this equation by xn

n! and sum from n = 0 to infinity. On the left
hand side you have a derivative of a certain EGF we might call B(x). On
the right hand side, you have a product of two EGFs, one of which is B(x).
What is the other one? What differential equation involving B(x) does this
give you. Solve the differential equation for B(x). This is the EGF for the
Bell numbers!.
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Problem 407.⇒ Prove that n2n−1 =
∑n

k=1 (
n
k )k by using EGFs. (h)

Problem 408.· In light of Problem 382, why is the EGF for the Stirling num-
bers S(n , k) of the second kind not (ex − 1)n? What is it equal to instead?

C.5 The Exponential Formula
Exponential generating functions turn out to be quite useful in advanced work in
combinatorics. One reason why is that it is often possible to give a combinatorial
interpretation to the composition of two exponential generating functions. In
particular, if f (x) =

∑n
i=0 ai

xi

i! and g(x) =
∑∞

j=1 b j
x j

j! , it makes sense to form the
composition f (g(x)) because in so doing we need add together only finitely many
terms in order to find the coefficient of xn

n! in f (g(x)) since in the EGF g(x) the
dummy variable j starts at 1. Since our study of combinatorial structures has
not been advanced enough to give us applications of a general formula for the
composition of the EGF, we will not give here the combinatorial interpretation of
this composition. However we have seen some examples where one particular
composition can be applied. Namely, if f (x) = ex = (x), then f (g(x)) =
exp(g(x)) is well defined when b0 = 0. We have seen three examples in which an
EGF is e f (x) where f (x) is another EGF. There is a fourth example in which the
exponential function is slightly hidden.

Problem 409.· If f (x) is the EGF for the number of partitions of an n-set
into one block, and g(x) is the EGF for the total number of partitions of an
n-element set, that is, for the Bell numbers Bn , how are the two generating
functions related?

Problem 410.· Let f (x) be the EGF for the number of permutations of an
n-element set with one cycle of size one or two. What is f (x)? What is the
EGF g(x) for the number of permutations of an n-element set all of whose
cycles have size one or two, that is, the number of involutions in Sn? How
are these two exponential generating functions related?

Problem 411.⇒ · Let f (x) be the EGF for the number of permutations of an n-
element set that have exactly one two-cycle and no other cycles. Let g(x) be
the EGF for the number of permutations which are products of two-cycles
only, that is, for tennis pairings. (That is, they are not a product of two-cycles
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and a nonzero number of one-cycles). What is f (x)? What is g(x)? How
are these to exponential generating functions related?

Problem 412.· Let f (x) be the EGF for the number of permutations of an
n-element set that have exactly one cycle. (This is the same as the EGF for
the number of ways to arrange n people around a round table.) Let g(x) be
the EGF for the total number of permutations of an n-element set. What is
f (x)? What is g(x)? How are f (x) and g(x) related?

There was one element that our last four problems had in common. In each
case our EGF f (x) involved the number of structures of a certain type (partitions,
telephone networks, tennis pairings, permutations) that used only one set of an
appropriate kind. (That is, we had a partition with one part, a telephone network
consisting either of one person or two people connected to each other, a tennis
pairing of one set of two people, or a permutation with one cycle.) Our EGF g(x)
was the number of structures of the same “type” (we put type in quotation marks
here because we don’t plan to define it formally) that could consist of any number
of sets of the appropriate kind. Notice that the order of these sets was irrelevant.
For example we don’t order the blocks of a partition and a product of disjoint cycles
is the same no matter what order we use to write down the product. Thus we were
relating the EGF for structures which were somehow “building blocks” to the EGF
for structures which were sets of building blocks. For a reason that you will see
later, it is common to call the building blocks connected structures. Notice that
our connected structures were all based on nonempty sets, so we had no connected
structures whose value was the empty set. Thus in each case, if f (x) =

∑∞
i=0 ai

xi

i! ,
we would have a0 = 0. The relationship between the EGFs was always g(x) = e f (x).
We now give a combinatorial explanation for this relationship.

Problem 413.· Suppose that F is a species of structures of a set X with no
structures on the empty set. Let f (x) be the EGF for F .

(a) In the power series

e f (x) = 1 + f (x) +
f (x)2

2!
+ · · ·+ f (x)k

k!
+ · · · =

∞∑
k=0

f (x)k

k!
,

what does Corollary C.4.3 tell us about the coefficient of xn

n! in f (x)k

k! ?

(b) What does the coefficient of xn

n! in e f (x) count?

In Problem 413 we proved the following theorem, which is called the exponen-
tial formula.
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Theorem C.5.1. Suppose that F is a species of structures on subsets of a set X with no
structures on the empty set. Let f (x) be the EGF for F . Then the coefficient of xn

n! in e f (x)

is the number of sets of structures on disjoint sets whose union is a particular set of size n.

Let us see how the exponential formula applies to the examples in Problems 409,
410, 411 and 412. In Problem 382 our familyF should consist of one-block partitions
of finite subsets of a set, say the set of natural numbers. Since a partition of a set
is a set of blocks whose union is S, a one-block partition whose block is B is the
set {B}. Then any nonempty finite subset of of the positive integers is the value
of exactly one structure in F . (There is no one-block partition of the empty set,
so we have no structures using the empty set.) As you showed in Problem 382
the generating function for partitions with just one block is ex − 1. Thus by the
exponential formula, (ex−1) is the EGF for sets of subsets of the positive integers
whose values are disjoint sets whose union is any particular set N of size n. This
set of disjoint sets partitions the set N . Thus (ex − 1) is the EGF for partitions of
sets of size n. (As we wrote our description, it is the EGF for partitions of n-element
subsets of the positive integers, but any two n-element sets have the same number
of partitions.) In other words, (ex − 1) is the exponential generating function
for the Bell numbers Bn .

Problem 414.· Explain how the exponential formula proves the relationship
we saw in Problem 412.

Problem 415.· Explain how the exponential formula proves the relationship
we saw in Problem 411.

Problem 416.· Explain how the exponential formula proves the relationship
we saw in Problem 410.

Problem 417.· In Problem 373 we saw that the generating function for the
number of ways to use five colors of paint to paint n light poles along
the north side of Main Street in Anytown was e4x . We should expect an
explanation of this EGF using the exponential formula. Let F be the family
of all one-element sets of light poles with the additional construction of
an ordered pair consisting of a light pole and a color. Thus a given light
pole occurs in five ordered pairs. Put no structures on any other finite set.
Show that this is a species of structures on the finite subsets of the positive
integers. What is the exponential generating function f (x) forF ? Assuming
that there is no upper limit on the number of light poles, what subsets of S
does the exponential formula tell us are counted by the coefficient of xn in
e f (x)? How do the sets being counted relate to ways to paint light poles?
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One of the most spectacular applications of the exponential formula is also
the reason why, when we regard a combinatorial structure as a set of building
block structures, we call the building block structures connected. In Chapter 2 we
introduced the idea of a connected graph and in Problem 104 we saw examples of
graphs which were connected and were not connected. A subset C of the vertex set
of a graph is called a connected component of the graph if

• every vertex in C is connected to every other vertex in that set by a walk
whose vertices lie in C, and

• no other vertex in the graph is connected by a walk to any vertex in C.

In Problem 241 we showed that each connected component of a graph consists
of a vertex and all vertices connected to it by walks in the graph.

Problem 418.· Show that every vertex of a graph lies in one and only one
connected component of a graph. (Notice that this shows that the connected
components of a graph form a partition of the vertex set of the graph.)

Problem 419.· Explain why no edge of the graph connects two vertices in
different connected components.

Problem 420.· Explain why it is that if C is a connected component of a
graph and E′ is the set of all edges of the graph that connect vertices in C,
then the graph with vertex set C and edge set E′ is a connected graph. We
call this graph a connected component graph of the original graph.

The last sequence of problems shows that we may think of any graph as the set
of its connected component graphs. (Once we know them, we know all the vertices
and all the edges of the graph). Notice that a graph is connected if and only if
it has exactly one connected component. Since the connected components form a
partition of the vertex set of a graph, the exponential formula will relate the EGF
for the number of connected graphs on n vertices with the EGF for the number of
graphs (connected or not) on n vertices. However because we can draw as many
edges as we want between two vertices of a graph, there are infinitely many graphs
on n vertices, and so the problem of counting them is uninteresting. We can make
it interesting by considering simple graphs, namely graphs in which each edge
has two distinct endpoints and no two edges connect the same two vertices. It is
because connected graphs form the building blocks for viewing all graphs as sets of
connected components that we refer to the building blocks for structures counted
by the EGF in the exponential formula as connected structures.
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Problem 421.⇒ · Suppose that f (x) =
∑∞

n=0 cn
xn

n! is the exponential generating
function for the number of simple connected graphs on n vertices and
g(x) =

∑∞
i=0 ai

xi

i! is the exponential generating function for the number of
simple graphs on i vertices. From this point onward, any use of the word
graph means simple graph.

(a) Is f (x) = e g(x), is f (x) = e g(x)−1, is g(x) = e f (x)−1 or is g(x) = e f (x)? (h)

(b) One of ai and cn can be computed by recognizing that a simple graph
on a vertex set V is completely determined by its edge set and its edge
set is a subset of the set of two element subsets of V . Figure out which
it is and compute it. (h)

(c) Write g(x) in terms of the natural logarithm of f (x) or f (x) in terms
of the natural logarithm of g(x).

(d) Write (1 + y) as a power series in y. (h)

(e) Why is the coefficient of x0

0! in g(x) equal to one? Write f (x) as a power
series in g(x) − 1.

(f) You can now use the previous parts of the problem to find a formula
for cn that involves summing over all partitions of the integer n. (It
isn’t the simplest formula in the world, and it isn’t the easiest formula
in the world to figure out, but it is nonetheless a formula with which
one could actually make computations!) Find such a formula. (h)

The point to the last problem is that we can use the exponential formula in
reverse to say that if g(x) is the generating function for the number of (nonempty)
connected structures of size n in a given family of combinatorial structures and
f (x) is the generating function for all the structures of size n in that family, then
not only is f (x) = e g(x), but g(x) = ( f (x)) as well. Further, if we happen to have
a formula for either the coefficients of f (x) or the coefficients of g(x), we can get a
formula for the coefficients of the other one!

C.6 Supplementary Problems
1. Use product principle for EGFs and the idea of coloring a set in two colors to
prove the formula ex · ex = e2x .

2. Find the EGF for the number of ordered functions from a k-element set to an
n-element set.

3. Find the EGF for the number of ways to string n distinct beads onto a necklace.

4. Find the exponential generating function for the number of broken permutations
of a k-element set into n parts.

5. Find the EGF for the total number of broken permutations of a k-element set.
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6. Find the EGF for the number of graphs on n vertices in which every vertex has
degree 2.

7. Recall that a cycle of a permutation cannot be empty.
(a) What is the generating function for the number of cycles on an even number

of elements (i.e. permutations of an even number n of elements that form
an n-cycle)? Your answer should not have a summation sign in it. Hint: If
y =

∑∞
i=0

x2i

2i , what is the derivative of y?
(b) What is the generating function for the number of permutations on n elements

that are a product of even cycles?
(c) What is the generating function for the number of cycles on an odd number

of elements?
(d) What is the generating function for the number of permutations on n elements

that are a product of odd cycles?
(e) How do the generating functions in parts b and d of this problem related to

the generating function for all permutations on n elements?
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Appendix D

Hints to Selected Problems

1. Answer the questions in Problem 2 for the case of five schools.

3. For each kind of bread, how many sandwiches are possible?

6. Try to solve the problem first with a two-scoop cone. (Look for an earlier
problem that is analogous.) Then, for each two scoop cone, in how many
ways can you put on a top scoop?

7.a. Ask yourself “how many choices do we have for f (1)?” Then ask how many
choices we have for f (2).

7.b. It may not be practical to write down rules for all the functions for this
problem. But you could ask yourself how many choices we have for f (1),
how many we have for f (2) and how many we have for f (3).

7.c. If you are choosing a function f , how many choices do you have for f (a)?
Then how many choices do you have for f (b)?

8.a. You know how to figure out in how many ways they could make a list of
three flavors out of the twelve. But each set of three flavors can be listed in a
number of different ways. Try to figure out in how many ways a set of three
flavors can be listed, and then try to see how this helps you.

8.b. Try to break the problem up into cases you can solve by previous methods;
then figure out how to get the answer to the problem by using these answers
for the cases.

12.a. Suppose you have a list in alphabetical order of names of the members of the
club. In how many ways can you pair up the first person on the list? In how
many ways can you pair up the next person who isn’t already paired up?

169
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15. In how many ways may you assign the men to their rows? The women? Once
a woman and a man have a row to share, in how many ways may they choose
their seats?

18. Try applying the product principle in the case n = 2 and n = 3. How might
you apply it in general?

19. Ask yourself if either the sum principle or product principle applies.
Additional Hint: Remember that zero is a number.

20. Do you see an analogy between this problem and any of the previous prob-
lems?

26.a. For each part of this problem, think about how many arrows are allowed to
enter a vertex representing a member of Y.

28. The problem is asking you to describe a one-to-one function from the set of
binary representations of numbers between 0 and 2n−1 onto the set of subsets
of the set [n]. Write down these two sets for n = 2. They should both have
four elements. The set of binary representations should contain the string 00.
You could think of this as the instruction “take no ones and take no twos.”
In that context, what could you think of the string 11 as standing for? This
should help you describe a function. Of course now you have to figure out
how to show it is one-to-one and onto.

31. Starting with the row 1 8 28 56 70 56 28 8 1, put dots below it where the
elements of row 9 should be. Then put dots below that where the elements
of row 10 should be. Do the same for rows 11 and 12. Mark the dot where
row 12 should appear. Now mark the dots you need in row 11 to compute
the entry in column 3 of row 12. Now mark the dots you need in row 10 to
compute the marked entries in row 11. Do the same for rows 9 and 8. Now
you should be able to see what you need to do.

32.a. Begin by trying to figure out what the entries just above the diagonal of the
rectangle are. After that, what other entries can you figure out?

32.b. See if you can figure out what the entries in column −1 have to be.

32.c. What does the sum of two consecutive values in row −1 have to be? Could
this sum depend on which two consecutive values we take? Is there some
value of row −1 that we could choose arbitrarily? Now what about row −2?
Can we make arbitrary choices there? If so, how many can we make, and is
their position arbitrary?

36. The first thing you need to decide is “What are the two sets whose elements
we are counting?” Then it will be easier to think of a bĳection between these
two sets. It turns out that these two sets are sets of sets!



171

37. Ask yourself “What is a problem like this doing in the middle of a bunch of
problems about counting subsets of a set? Is it related, or is it supposed to
gives us a break from sets?”

38. The problem suggests that you think about how to get a list from a seating
arrangement. Could every list of n distinct people come from a seating chart?
How many lists of n distinct people are there? How many lists could we get
from a given seating chart by taking different starting places?

Additional Hint: For a different way of doing the problem, suppose that you
have chosen one person, say the first one in a list of the people in alphabetical
order by name. Now seat that person. Does it matter where they sit? In ways
can you seat the remaining people? Does it matter where the second person
in alphabetical order sits?

39.a. A block consists of all permutations of some subset {a1 , a2 , . . . , ak} of S. How
many permutations are there of the set {a1 , a2 , . . . , ak}?

39.c. What sets are listed, and how many times is each one listed if you take one
list from each row of Table 1.2.8? How does this choice of lists give you the
bĳection in this special case?

39.d. You can make good use of the product principle here.

40.b. The coach is making a sequence of decisions. Can you figure out how many
choices the coach has for each decision in the sequence?

40.c. As with any counting problem whose context does not suggest an approach,
it is useful to ask yourself if you could decompose the problem into simpler
parts by using either the sum or product principle.

43. How could we get a list of beads from a necklace?

Additional Hint: When we cut the necklace and string it out on a table, there
are 2n lists of beads we could get. Why is it 2n rather than n?

44.a. You might first choose the pairs of people. You might also choose to make a
list of all the people and then take them by twos from the list.

44.b. You might first choose ordered pairs of people, and have the first person in
each pair serve first. You might also choose to make a list of all the people
and then take them by twos from the list in order.

45. It might be helpful to just draw some pictures of the possible configurations.
There aren’t that many.

47. Note that we must walk at least ten blocks, so ten is the smallest number of
blocks possible. In how many of those ten blocks must we walk north?
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48.b. In Problem 47 you saw that we had to make ten choices of north or east,
choosing north four times.

48.c. This problem is actually a bit tricky. What happens to the answer if i > m or
j > n? Remember that paths go up or to the right.

49.a. Where can you go from (0,0) in one step? In two steps? In any of these cases,
what can you say about the sum of the coordinates of a point you can get to?
Can you find any other relationship between the x- and y-coordinates of a
point you can get to? For example, can you get to the point (1, 3)?

49.c. How many choices do you have to make in order to choose a path?

50.c. In each part, each such sequence corresponds to a path that can’t cross over
(but may touch) a certain line.

51.b. Given a path from (0, 0) to (n , n) which touches or crosses the line y = x +1,
how can you modify the part of the path from (0, 0) to the first touch of
y = x + 1 so that the modified path starts instead at (−1, 1)? The trick is to
do this in a systematic way that will give you your bĳection.

51.c. A path either touches the line y = x + 1 or it doesn’t. This partitions the set
of paths into two blocks.

52.b. Look back at the definition of a Dyck Path and a Catalan Path.

52.c. What makes this part difficult is understanding how we are partitioning the
paths. As an example, B0 is the set of all paths that have no upsteps following
the last absolute minimum. Can such a path have downsteps after the last
absolute minimum? (The description we gave of B0 is not succinct enough to
be the answer to the second question of this part.) As another example B1 is
the set of all paths that have exactly one upstep and perhaps some downsteps
after the last absolute minimum. Is it possible, though, for a path in B1 to have
any downsteps after the last absolute minimum? A path in B2 has exactly two
upsteps after its last absolute minimum. If is possible to have one downstep
after the last absolute minimum, but it has to be in a special place. What
place is that? Now to figure out how many parts our partition has, we need
to know the maximum number of upsteps a path can have following its last
absolute minimum. What is this maximum? It might help to draw some
pictures with n = 5 or 6. In particular, is it possible that all upsteps occur
after the last absolute minimum?

52.e. Using d for down and u for up, we could have uudduuddudud as our Catalan
path. Suppose that i = 5. The fifth upstep is the u in position 9. Thus
F = uudduudd, U = u, and B = dud. Now BUF is duduuudduudd. This
is a Dyck path that begins by going below the x-axis. The d’s in positions 1
and 3 take the path to the y-coordinate −1. Then the y coordinate climbs to 2,
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goes back to 0, up to 2 again, and finally down to 0. So the absolute minimum
is −1, and it occurs in the first and third position. There are five u’s after
the third positon. So this Dyck path is in the block B5 of our partition. Now
comes the crucial question. Why were there five u’s after that last absolute
minimum in position 3? Try with the same path and i = 3. Figure out why
there are three u’s after the last absolute minimum in the resulting path. All
this discussion should explain why when i = 5, the set of all Catalan paths
is mapped into the set B5. Keeping i = 5 for a while, try to see why this
correspondence between Catalan paths and B5 is a bĳection. Then, if you
need to, do the same thing with i = 3. This should give you enough insight
to do the general case.

55. What would the lower limit of the sum have to be for this problem to be a
routine application of the binomial theorem?

56. What does the binomial theorem give you for (x − y)n?

57. Consider (x + y)m(x + y)n .

Additional Hint: What does (m+n
k ) count? What does (m

i )(
m

k−1 ) count?

58. For example when n = 3, we have (30 ) = (33 ) and (31 ) = (32 ). The number
of subsets of even size is (30 ) + (32 ) and the number of subsets of odd size is
(31 ) + (33 ), and the two sums can be paired off into equal terms. When we
subtract the number of subsets of odd size from the number of subsets of
even size, the pairing also gives us (30 ) − (31 ) + (32 ) − (33 ) = 0.

59. Take the derivative of something interesting.

61. To prove that each function from a set S of size n to a set of size less than
n is not one-to-one, we must prove that regardless of the function f that we
choose, there are always two elements, say x and y, such that f (x) = f (y).

62. The previous exercise could help you prove that if f is one-to-one, then it is
onto.

Additional Hint: The sum principle can help you show that if f is an onto
function, then f is one-to-one.

63. The statement of the generalized pigeonhole principle involves the number
of elements in a block, so a counting principle is likely to help you.

64. You may choose a specific number for n if you want to. Notice that the last
two digits of the powers of a prime other than two cannot represent an even
number.

65. While this sounds like a pigeonhole principle problem, the ordinary pigeon-
hole principle doesn’t guarantee three of something.
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67. What usually makes it hard for students to start this problem is the fact that
we just defined what R(4, 4) is, and not what it means for a number not to be
R(4, 4). So to get started, try to write down what it means to say R(4, 4) is
not 8. You will see that there are two things that can keep R(4, 4) from being
8. You need to figure out which one happens and explain why. One such
explanation could involve the graph K8 .

68. Review Problem 65 and your solution of it.

69. Let ai be the number of acquaintances of person i. Can you explain why the
sum of the numbers ai is even?

70. Often when there is a counter-example, there is one with a good deal of
symmetry. (Caution: there is a difference between often and always!) One
way to help yourself get a symmetric example, if there is one, is to put 8
vertices into a circle. Then, perhaps, you might draw green edges in some
sort of regular fashion until it is impossible to draw another green edge
between any two of the vertices without creating a green triangle.

71. In Problem 68 you showed that R(4, 3) ≤ 10. In Problem 70 you showed that
R(4, 3) > 8. Thus R(4, 3) is either 9 or 10. Deciding which is the case is just
plain hard. But there is a relevant problem we have done that we haven’t
used yet.

72. We wish to prove that (n
i ) = n!

i!(n−i)! . Mathematical induction allows us to
assume that (n−1

j ) =
(n−1)!

j!(n−1− j)! for every jbetween 0 and n − 1. How does this
put us into a position to use the Pascal relation? What special cases will be
left over?

73. What sort of relationship do you know between values of the form (n
i ) and

values of the form (n−1
j )?

75. We did something rather similar in our example of the inductive proof that a
set with n elements has 2n subsets. The work you did in a previous problem
may be similar to part of what you need to do here.

76.a. This may look difficult because one can’t decide in advance on whether to
try to induct on m, on n, or on their sum. In some sense, it doesn’t matter
which you choose to induct on, though inducting on the sum would look
more complicated. For most people inducting on n fits their way of working
with exponents best.

76.b. Here it matters whether you choose to induct on m or n. However, it matters
only in the sense that you need to use more tools in one case. In one case, you
are likely to need the rule (cd)n = cn dn(, which we haven’t proved. (However,
you might be able to prove that by induction!) In either case, you may find
part (a) handy.
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79. We didn’t explicitly say to use induction here, but, especially in this context,
induction is a natural tool to try here. But we don’t have a variable n to
induct on. That means you have to choose one. So what do you think is most
useful. The number of blocks in the partition? The size of the first block of
the partition? The size of the set we are partitioning? Or something else?

80. Think about how you might have gone from the number of double decker
cones to the number of triple decker cones in Problem 6.

81. Perhaps the first thing one needs to ask is why proving that if there are
(m+n−2

m−1 )people in a room, then there are either at least m mutual acquaintances
or at least n mutual strangers proves that R(m , n) exists. Can you see why
this tells us that there is some number R of people such that if R people are in
a room, then there are m mutual acquaintances or n mutual strangers? And
why does that mean the Ramsey Number exists?

Additional Hint: Naturally it should come as no surprise that you will use
double induction, and you can use either form. As you think about how to
use induction, the Pascal relation will come to mind. This suggests that you
want to make assumptions involving (m+n−3

m−1 ) people in a room, or (m+n−3
m−2 )

people in a room. Now you have to figure out what these assumptions are
and how they help you prove the result! Recall that we have made progress
before by choosing one person and asking whether this person is acquainted
with at least some number of people or unacquainted with at least some other
number of people.

82. One expects to need double induction again here. But only because of the
location of the problem and because the sum looks like double induction.
And those reasons aren’t enough to mean you have to use double induction.
If you had this result in hand already, then you could us it with double
induction to give a second proof that Ramsey Numbers exist.

Additional Hint: What you do need to show is that if there are R(m − 1, n)+
R(m , n−1) people in a room, then there are either m mutual acquaintances or
n mutual strangers. As with earlier problems, it helps to start with a person
and think about the number of people with whom this person is acquainted
or nonacquainted. The generalized pigeonhole principle tells you something
about these numbers.

83.b. If you could find four mutual acquaintances, you could assume person 1 is
among them. And by the generalized pigeonhole principle and symmetry,
so are two of the people to the first, second, fourth and eighth to the right.
Now there are lots of possibilities for that fourth person. You now have the
hard work of using symmetry and the definition of who is acquainted with
whom to eliminate all possible combinations of four people. Then you have
to think about nonacquaintances.

86.a. What is the definition of R(n , n)?
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86.b. If you average a bunch of numbers and each one is bigger than one, what can
you say about the average?

86.c. Note that there are 2(
n
2
) graphs on a set of n vertices.

86.d. A notation for the sum over all colorings c of Km is∑
c:c is a coloring of Km

,

and a notation for the sum over all subsets N of M that have size n is∑
N:N⊆M, |N |=n

86.e. If you interchange the order of summation so that you sum over subsets first
and colorings second, you can take advantage of the fact that for a fixed subset
N , you can count count the number of colorings in which it is monochromatic.

86.f. You have an inequality involving m and n that tells you that R(n , n) > m.
Suppose you could work with that inequality in order to show that if the
inequality holds, then m is bigger than something. What could you conclude
about R(n , n)?

87. Remember, a subset of [n] either does or doesn’t contain n.

90.b. A first order recurrence for an gives us an as a function of an−1.

91. Suppose you already knew the number of moves needed to solve the puzzle
with n − 1rings.

92. If we have n − 1circles drawn in such a way that they define rn−1 regions, and
we draw a new circle, each time it crosses another circle, except for the last
time, it finishes dividing one region into two parts and starts dividing a new
region into two parts.

Additional Hint: Compare rn with the number of subsets of an n-element
set.

98. You might try working out the cases n = 2, 3, 4 and then look for a pattern.
Alternately, you could write an−1 = ban−2 + d, substitute the right hand side
of this expression into an = ban−1 + d to get a recurrence involving only an−2
, and then repeat a similar process with an−2 and perhaps an−3 and see a
pattern that is developing.

102.a. There are several ways to see how to do this problem. One is to draw pictures
of graphs with one edge, two edges, three edges, perhaps four edges and fig-
ure out the sum of the degrees. Another is to ask what deleting an edge does
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to the sum of the degrees. Another is to ask what a given edge “contributes”
to the sum of the degrees.

102.b. To make your inductive step, think about what happens to a graph if you
delete an edge.

102.d. Suppose that instead of summing the degree of v over all vertices v, you sum
some quantity defined for each edge e over all the edges.

103. Whatever you say should be consistent with what you already know about
degrees of vertices.

108. What happens if you choose an edge and delete it, but not its endpoints?

109. One approach to the problem is to use facts that we already know about
degrees, vertices and edges. Another approach is to try deleting an edge
from a tree with more than one vertex and analyze the possible numbers of
vertices of degree one in what is left over.

111. When you get to four and especially five vertices, draw all the unlabeled trees
you can think of, and then figure out in how many different ways you can put
labels on the vertices.

112.b. Do some examples.

112.c. Is it possible for a1 to be equal to one of the b js?

112.d. You have seen that the sequence b determines a1. Does it determine any other
a js? If you knew all the a js and all the b js, could you reconstruct the tree?
What are the possible values of b1? b j?

113. What vertex or vertices in the sequence b1 , b2 , . . . , bn−1 can have degree 1?

115. If a vertex has degree 1, how many times does it appear in the Prüfer code of
the tree? What about a vertex of degree 2?

116. How many vertices appear exactly once in the Prüfer code of the tree and
how many appear exactly twice?

118. Think of selecting one edge of the tree at a time. Given that you have chosen
some edges and have a graph whose connected components are trees, what
is a good way to choose the next edge? To prove your method correct, use
contradiction by assuming there is a spanning tree tree with lower total cost.

Additional Hint: Think of selecting one edge of the tree at a time. But now
do it in such a way that one connected component is a tree and the other
connected components have just one vertex. What is a good way to make
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the component that is a tree into a tree with one more vertex? To prove your
method works, use contradiction by assuming there is a spanning tree with
lower total cost.

119.a. If you have a spanning tree of G that contains e, is the graph that results from
that tree by contracting e still a tree?

122.c. If you decide to put it on a shelf that already has a book, you have two choices
of where to put it on that shelf.

122.e. Among all the places you could put books, on all the shelves, how many are
to the immediate left of some book? How many other places are there?

123. How can you make sure that each shelf gets at least one book before you start
the process described in Problem 122?

124. What is the relationship between the number of ways to distribute identical
books and the number of ways to distribute distinct books?

125. Look for a relationship between a multiset of shelves and a way of distributing
identical books to shelves

126. Note that (n+k−1
k ) = (n+k−1

n−1 ). So we have to figure out how choosing either k
elements or n − 1 elements out of n + k − 1 elements constitutes the choice of
a multiset. We really have no idea what set of n + k − 1 objects to use, so why
not use [n + k −1]? If we choose n −1 of these objects, there are k left over, the
same number as the number of elements of our multiset. Since our multiset
is supposed to be chosen from an n-element set, perhaps we should let the
n-element set be [n]. From our choice of n − 1 numbers, we have to decide
on the multiplicity of 1 through n. For example with n = 4 and k = 6, we
have n + k − 1 = 9. Here, shown with underlines, is a selection of 3 = n − 1
elements from [9]: 1, 2, 3, 45, 6, 7, 8, 9. How do the underlined elements give
us a multiset of size 6 chosen from an [4]-element set? In this case, 1 has
multiplicity 2, 2 has multiplicity 1, 3 has multiplicity 2, and 4 has multiplicity
1.

127. A solution to the equations assigns a nonnegative number to each of 1, 2, . . . ,m
so that the nonnegative numbers add to r. Does such an assignment have a
combinatorial meaning?

128. Can you think of some way of guaranteeing that each recipient gets m objects
(assuming k ≥ mn) right at the beginning of the process of passing the objects
out?

129. We already know how to place k distinct books onto n distinct shelves so
that each shelf gets at least one. Suppose we replace the distinct books with
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identical ones. If we permute the distinct books before replacement, does
that affect the final outcome? There are other ways to solve this problem.

130. Do you see a relationship between compositions and something else we have
counted already?

131. If we line up k identical books, how many adjacencies are there in between
books?

133. Imagine taking a stack of k books, and breaking it up into stacks to put into
the boxes in the same order they were originally stacked. If you are going
to use n boxes, in how many places will you have to break the stack up into
smaller stacks, and how many ways can you do this?

Additional Hint: How many different bookcase arrangements correspond to
the same way of stacking k books into n boxes so that each box has at least
one book?

134. The number of partitions of [k] into n parts in which k is not in a block relates
to the number of partitions of k − 1 into some number of blocks in a way that
involves n. With this in mind, review how you proved Pascal’s (recurrence)
equation.

137. What if the question asked about six sandwiches and two distinct bags? How
does having identical bags change the answer?

138. What are the possible sizes of parts?

139. Suppose we make a list of the k items. We take the first k1 elements to be the
blocks of size 1. How many elements do we need to take to get k2 blocks of
size two? Which elements does it make sense to choose for this purpose?

141. To see how many broken permutations of a k element set into n parts do
not have k is a part by itself, ask yourself how many broken permutations
of [7] result from adding 7 to the one of the two permutations in the broken
permutation {14, 2356}.

142.b. Here it is helpful to think about what happens if you delete the entire block
containing k rather than thinking about whether k is in a block by itself or
not.

143. You can think of a function as assigning values to the blocks of its partition.
If you permute the values assigned to the blocks, do you always change the
function?

144. The Prüfer code of a labeled tree is a sequence of n − 2 entries that must
be chose from the vertices that do not have degree 1. The sequence can be
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though of as a function from the set [n − 2] to the set of vertices that do not
have degree 1. What is special about this function?

145. When you add the number of functions mapping onto J over all possible
subsets J of N , what is the set of functions whose size you are computing?

148. What if the ji ’s don’t add to k?

Additional Hint: Think about listing the elements of the k-element set and
labeling the first j1 elements with label number 1.

149. The sum principle will help here.

150. How are the relevant ji ’s in the multinomial coefficients you use here different
from the ji ’s in the previous problem.

151. Think about how binomial coefficients relate to expanding a power of a bino-
mial and note that the binomial coefficient (n

k ) and the multinomial coefficient
( n

k ,n−k ) are the same.

152.a. We have related Stirling numbers to powers nk . How are binomial coefficients
related to falling factorial powers?

152.b. In the equation
∑n

j=0 n jS(k , j) = nk , we might try substituting x for n. How-
ever we don’t know what

∑x
j=0 means when x is a variable. Is there anything

other than n that makes a suitable upper limit for the sum? (Think about
what you know about S(k , j).

153. For the last question, you might try taking advantage of the fact that x =
x + 1 − 1.

154. What does induction have to do with Equation (3.1)?

Additional Hint: What could you assume inductively about xk−1 if you were
trying to prove xk =

∑k
n=0 s(k , n)xn?

156.a. There is a solution for this problem similar to the solution to Problem 154.

156.b. Is the recurrence you got familiar?

156.d. Show that (−x)k = (−1)k xk and (−x)k = (−1)k xk .

Additional Hint: The first hint lets you write an equation for (−1)k xk as a ris-
ing factorial of something else and then use what you know about expressing
rising factorials in terms of falling factorials, after which you have to convert
back to factorial powers of x.
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162. How can you start with a partition of k and make it into a new partition of
k+1 that is guaranteed to have a part of size one, even if the original partition
didn’t?

163. Draw a line through the top-left corner and bottom-right corner of the topleft
box.

164. The largest part of a partition is the maximum number of boxes in a row of
its Young diagram. What does the maximum number of boxes in a column
tell us?

165. Draw all self conjugate partitions of integers less than or equal to 8. Draw
all partitions of integers less than or equal to 8 into distinct odd parts (many
of these will have just one part). Now try to see how to get from one set of
drawings to the other in a consistent way.

166. Draw the partitions of six into even parts. Draw the partitions of six into
parts used an even number of times. Look for a relationship between one set
of diagrams and the other set of diagrams. If you have trouble, repeat the
process using 8 or even 10 in place of 6.

167. Draw a partition of ten into four parts. Assume each square has area one.
Then draw a rectangle of area 40 enclosing your diagram that touches the
top of your diagram, the left side of your diagram and the bottom of your
diagram. How does this rectangle give you a partition of 30 into four parts?

168.c. Consider two cases, m′ > m and m′ = m.

168.d. Consider two cases, n′ > n and n′ = n.

169. Suppose we take two repetitions of this complementation process. What rows
and columns do we remove from the diagram?
Additional Hint: To deal with an odd number of repetitions of the comple-
mentation process, think of it as an even number plus 1. Thus ask what kind
of partition gives us the partition of one into one part after this complemen-
tation process.

170. How many compositions are there of k into n parts? What is the maximum
number of compositions that could correspond to a given partition of k into
n parts?

171.a. These two operations do rather different things to the number of parts, and
you can describe exactly what only one of the operations does. Think about
the Young diagram.

171.b. Think about the Young diagram. In only one of the two cases can you give
an exact answer to the question.
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171.c. Here the harder part requires that, after removal, you consider a range of
possible numbers being partitioned and that you give an upper bound on the
part size. However it lets you describe the number of parts exactly.

171.d. One of the two sets of partitions of smaller numbers from the previous part
is more amenable to finding a recurrence than the other. The resulting recur-
rence does not have just two terms though.

171.h. If there is a sum equal to zero, there may very well be a partition of zero.

172. How does the number of compositions of k into n distinct parts compare to
the number of compositions of k into n parts (not necessarily distinct)? What
do compositions have to do with partitions?

173. While you could simply display partitions of 7 into three parts and partitions
of 10 into three parts, we hope you won’t. Perhaps you could write down the
partitions of 4 into two parts and the partitions of 5 into two distinct parts
and look for a natural bĳection between them. So the hope is that you will
discover a bĳection from the set of partitions of 7 into three parts and the
partitions of 10 into three distinct parts. It could help to draw the Young
diagrams of partitions of 4 into two parts and the partitions of 5 into two
distinct parts.

174. In the case k = 4 and n = 2, we have m = 5. In the case k = 7 and n = 3, we
have m = 10.

175. What can you do to a Young diagram for a partition of k into n distinct parts
to get a Young diagram of a partition of k − n into some number of distinct
parts?

176. For any partition of k into parts λ1, λ2, etc. we can get a partition of k into
odd parts by factoring the highest power of two that we can from each λi ,
writing λi = γi · 2k

i . Why is γi odd? Now partition k into 2k1 parts of size γ1,
2k2 parts of size γ2, etc. and you have a partition of k into odd parts.

177. Suppose we have a partition of k into distinct parts. If the smallest part, say m,
is smaller than the number of parts, we may add one to each of the m largest
parts and delete the smallest part, and we have changed the parity of the
number of parts, but we still have distinct parts. On the other hand, suppose
the smallest part, again say m, is larger than or equal to the number of parts.
Then we can subtract 1 from each part larger than m, and add a part equal
to the number of parts larger than m. This changes the parity of the number
of parts, but if the second smallest part is m + 1, the resulting partition does
not have distinct parts. Thus this method does not work. Further, if it did
always work, the case k " 3 j2+ j

2 would be covered also. However you can
modify this method by comparing m not to the total number of parts, but to
the number of rows at the top of the Young diagram that differ by exactly one
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from the row above. Even in this situation, there are certain slight additional
assumptions you need to make, so this hint leaves you a lot of work to do. (It
is reasonable to expect problems because of that exceptional case.) However,
it should lead you in a useful direction.

183. Substitute something for A, P and B in your formula from Problem 181.

184. For example, to get the cost of the fruit selection APB you would want to get
x20x25x30 = x75.

186. Consider the example with n = 2. Then we have two variables, x1 and x2 .
Forgetting about x2 , what sum says we either take x1 or we don’t? Forgetting
about x1 , what sum says we either take x2 or we don’t? Now what product
says we either take x1 or we don’t and we either take x2 or we don’t?

188. For the last two questions, try multiplying out something simpler first, say
(a0+a1x+a2x2)(b0+b1x+b2x2) . If this problem seems difficult the part that
seems to cause students the most problems is converting the expression they
get for a product like this into summation notation. If you are having this
kind of problem, expand the product (a0 + a1x + a2x2)(b0 + b1x + b2x2) and
then figure out what the coefficient of x2 is. Try to write that in summation
notation.

189. Write down the formulas for the coefficients of x0, x1, x2 and x3 in
(

n∑
i=0

ai xi

) -.
/

m∑
j=0

b j x j01
2

.

190. How is this problem different from Problem 189? Is this an important differ-
ence from the point of view of the coefficient of xk?

191. If this problem appears difficult, the most likely reason is because the defi-
nitions are all new and symbolic. Focus on what it means for

∑∞
k=0 ck xk to

be the generating function for ordered pairs of total value k. In particular,
how do we get an ordered pair with total value k? What do we need to know
about the values of the components of the ordered pair?

192.b. You might try applying the product principle for generating functions to an
appropriate power of the generating function you got in the first part of this
problem.

Additional Hint: In Problem 125 you found a formula for the number of
k-element multisets chosen from an n-element set. Suppose you use this
formula for ak in

∑∞
k=0 ak xk . What do you get the generating function for?

195. While you could use calculus techniques, there is a much simpler approach.
Note that 1 + x = 1 − (−x).
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Additional Hint: Can you see a way to use Problem 194?

197. Look for a power of a polynomial to get started.

Additional Hint: The polynomial referred to in the first hint is a quotient of
two polynomials. The power of the denominator can be written as a power
series.

198. Intepret Problem 197 in terms of multisets.

199.e. When you factor out x1x2 · · · xn from the enumerator of trees, the result is a
sum of terms of degree n − 2. (The degree of xi1

1 xi2
2 · · · xin

n is i1 + i2 + · · ·+ in .)

Additional Hint: Write down the picture (using xs) of a tree on five vertices
with two vertices of degree one, of one with three vertices of degree one, and
with four vertices of degree 1. Factor x1x2x3x4x5 out of the picture and look
at what is left. How is it related to your vertices of degree one? Now remove
the vertices of degree 1 from the tree and write down the picture of the tree
that remains. What is special about the vertices of degree 1 of that tree. (You
can just barely learn something from this with five vertex trees, so you might
want to experiment a bit with six or seven vertex trees.)

200. This is a good place to apply the product principle for picture enumerators.

201.a. The product principle for generating functions helps you break the generating
function into a product of ten simpler ones.

201.b. m was 10 in the previous part of this problem.

202. Think about conjugate partitions.

203.a. Don’t be afraid of writing down a product of infinitely many power series.

203.b. From the fifth factor on, there is no way to choose a qi that has i nonzero and
less than five from the factor.

203.d. Describe to yourself how to get the coefficient of a given power of q.

204. If infinitely many of the polynomials had a nonzero coefficient for q, would
the product make any sense?

205. (1+ q2+ q4)(1+ q3+ q9) is the generating function for partitions of an integer
into at most two twos and at most two threes.

206. (1+ q2+ q4)(1+ q3+ q9) is the generating function for partitions of an integer
into at most two twos and at most two threes. (This is intentionally the same
hint as in the previous problem, but it has a different point in this problem.)
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207. In the power series
∑∞

j=0 q2i j , the 2i j has a different interpretation if you think
of it as (2i) · j or if you think of it as i · (2 j).

208. Note that
1 − q2

1 − q
· 1 − q4

1 − q2
· 1 − q6

1 − q3
· 1 − q8

1 − q4
=

(1 − q6)(1 − q8)

(1 − q)(1 − q3)
.

209. Note that qi + q3i + q5i + · · · = qi(1 + q2 + q4 + · · · ).

210.a. We want to calculate the number of partitions whose Young diagrams fit into
a two by two square. These partitions have at most two parts and the parts
have size at most two. Thus they are partitions of 1, 2, 3, or 4. However not
all partitions of 3 or 4 have diagrams that fit into a two by two square. Try
writing down the relevant diagrams.

210.b. They are the generating function for the number of partitions whose Young
diagram fits into a rectangle n−1units wide and 1 unit deep or into a rectangle
1 unit wide and n − 1 units deep respectively.

210.c. How can you get a diagram of a partition counted by partition is counted by
[m+n

n ]q from one whose partition is counted by [m+n
m ]q?

210.e.iii. Think about geometric operations on Young Diagrams

210.f. How would you use the Pascal recurrence to prove the corresponding result
for binomial coefficients?

210.g. For finding a bĳection, think about lattice paths.

210.h. If you could prove [m+n
n ]q is a polynomial function of q, what would that tell

you about how to compute the limit as q approaches −1?

Additional Hint: Try computing a table of values of [m+n
n ]q with q = −1 by

using the recurrence relation. Make a pretty big table so you can see what is
happening.

211.c. You may run into a product of the form
∑∞

i=0 ai xi ∑∞
j=0 b j x j . Note that in the

product, the coefficient of xk is
∑k

i=0 ai bk−i =
∑k

i=0
ai

bi .

214. Our recurrence becomes an = an−1 + an−2.

217.
5x + 1

(x − 3)(x − 5)
=

cx + 5c + dx − 3d
(x − 3)(x − 5)

gives us

5x = cx + dx
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1 = 5c − 3d.

218. To have
ax + b

(x − r1)(x − r2)
=

c
x − r1

+
d

x − r2
we must have

cx − r2c + dx − r1d = ax + b.

221. You can save yourself a tremendous amount of frustrating algebra if you
arbitrarily choose one of the solutions and call it r1 and call the other solution
r2 and solve the problem using these algebraic symbols in place of the actual
roots.1 Not only will you save yourself some work, but you will get a formula
you could use in other problems. When you are done, substitute in the actual
values of the solutions and simplify.

222.a. Once again it will save a lot of tedious algebra if you use the symbols r1 and
r2 for the solutions as in Problem 221 and substitute the actual values of the
solutions once you have a formula for an in terms of r1 and r2.

222.d. Think about how the binomial theorem might help you.

224.a. A Catalan path could touch the x-axis several times before it reaches (2n , 0).
Its first touch can be any point (2i , 0) between (2, 0) and (2n , 0). For the path
to touch first at (2i , 0), the path must start with an upstep and then proceed as
a Dyck path from (1, 1) to (2i−1, 1). From there it must take a downstep. Can
you see a bĳection between such Dyck paths and Catalan paths of a certain
kind?

224.b. Does the right-hand side of the recurrence remind you of some products you
have worked with?

224.c.
1 · 3 · 5 · · · (2i − 3)

i!
=

(2i − 2)!

(i − 1)!2i i!
.

226. Try drawing a Venn Diagram.

228. Try drawing a Venn Diagram.

231.b. For each student, how big is the set of backpack distributions in which that
student gets the correct backpack? It might be a good idea to first consider
cases with n = 3, 4, and 5.

Additional Hint: For each pair of students (say Mary and Jim, for example)
how big is the set of backpack distributions in which the students in this pair
get the correct backpack. What does the question have to do with unions or

1We use the words roots and solutions interchangeably.
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intersections of sets. Keep on increasing the number of students for which
you ask this kind of question.

232. Try induction.

Additional Hint: We can apply the formula of Problem 226 to get
AAAAA

n⋃
i=1

Ai

AAAAA =
AAAAA
(

n−1⋃
i=1

Ai

)
∪ An

AAAAA
=

AAAAA
n−1⋃
i=1

Ai

AAAAA+ |An | −
AAAAA
(

n−1⋃
i=1

Ai

)
∩ An

AAAAA
=

AAAAA
n−1⋃
i=1

Ai

AAAAA+ |An | −
AAAAA
n−1⋃
i=1

Ai ∩ An

AAAAA
233.b. Let T be the set of all i such that x ∈ Ai . In terms of x, what is different about

the i in T and those not in T?

Additional Hint: You may come to a point where the binomial theorem
would be helpful.

235. Notice that it is straightforward to figure out how many ways we may pass
out the apples so that child i gets five or more apples: give five apples to
child i and then pass out the remaining apples however you choose. And if
we want to figure out how many ways we may pass out the apples so that a
given set C of children each get five or more apples, we give five to each child
in C and then pass out the remaining k − 5|C | apples however we choose.

236. Start with two questions that can apply to any inclusion-exclusion problem.
Do you think you would be better off trying to compute the size of a union
of sets or the size of a complement of a union of sets? What kinds of sets
(that are conceivably of use to you) is it easy to compute the size of? (The
second question can be interpreted in different ways, and for each way of
interpreting it, the answer may help you see something you can use in solving
the problem.)

Additional Hint: Suppose we have a set S of couples whom we want to seat
side by side. We can think of lining up |S | couples and 2n − 2|S | individual
people in a circle. In how many ways can we arrange this many items in a
circle?

237. Reason somewhat as you did in Problem 236, noting that if the set of couples
who do sit side-by-side is nonempty, then the sex of the person at each place
at the table is determined once we seat one couple in that set.

Additional Hint: Think in terms of the sets Ai of arrangements of people in
which couple i sits side-by-side. What does the union of the sets Ai have to
do with the problem?
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239. What does Problem 238 have to do with this question?

242.a. For each edge in F to connect two vertices of the same color, we must have
all the vertices in a connected component of the graph with vertex set V and
edge set F colored the same color.

242.c. How does the number you are trying to compute relate to the union of the
sets Ai?

243. One way to get a proper coloring of G − e is to start with a proper coloring of
G and remove e. But there are other colorings of G that become proper when
you remove e.

246. One approach would be to try to guess the result by doing a bunch of examples
and use induction to prove you are right. If you try this, what will you be
able to use to make the induction step work? There are other approaches as
well.

253.a. What do you want ϕn ◦ ϕ−1 to be?

254. If σi = σ j and i " j, what can you conclude about ι?

256.b. What does it mean for one function to be the inverse of another one?

261. Once you know where the corners of the square go under the action of an
isometry, how much do you know about the isometry?

264. In how many ways can you choose a place to which you can move vertex
1? Having done that, in how many ways can you place the three vertices
adjacent to vertex 1?

265.a. In how many ways can you choose a place to which you can move vertex
1? Having done that, in how many ways can you place the three vertices
adjacent to vertex 1?

265.b. Why is it sufficient to focus on permutations that take vertex 1 to itself?

270. If a subgroup contains, say, ρ3 and some flip, how many elements of D4 must
it contain?

272. If the list (i σ(i) σ2(i) . . . σn(i)) does not have repeated elements but the
list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated elements, then which
element or elements are repeats?

277. The element k is either in a cycle by itself or it isn’t.
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286. Before you try to show that σ actually is a permutation of the colorings, it
would be useful to verify the second part of the definition of a group action,
namely that σ ◦ ϕ = σ ◦ ϕ.

289. If z ∈ Gx and z ∈ Gy , how can you use elements of G to explain the
relationship between x and y?

Additional Hint: Suppose σ is a fixed member of G. As τ ranges over G,
which elements of G occur as τσ?

295. How does the size of a multiorbit compare to the size of G?

301. We are asking for the number of orbits of some group on lists of four Rs, six
Bs, and seven Gs.

305. There are five kinds of elements in the rotation group of the cube. For
example, there are six rotations by 90 degrees or 270 degrees around an axis
connecting the centers of two opposite faces and there are 8 rotations (of
120 degrees and 240 degrees, respectively) around an axis connecting two
diagonally opposite vertices.

306. Is it possible for a nontrivial rotation to fix any coloring?

309. There are 48 elements in the group of automorphisms of the graph.

Additional Hint: For this problem, it may be easier to ask which group
elements fix a coloring rather than which colorings are fixed by a group
element.

326. The group of automorphisms of the graph has 48 elements and contains D6

as a subgraph.

Additional Hint: The permutations with four one-cycles and the two-cycle
(1 4), (2 5), or (3 6) are in the group of automorphisms. Once you know the
cycle structure of D6 and (1 4)D6 = {(1 4)σ |σ ∈ D6}, you know the cycle
structure of every element of the group.

327. What does the symmetric group on five vertices have to do with this problem?

329.c. In the relation of a function, how many pairs (x , f (x)) have the same x-value?

332. For the second question, how many arrows have to leave the empty set? How
many arrows have to leave a set of size one?

339. What is the domain of g ◦ f ?

345. If we have scoops of vanilla, chocolate, and strawberry sitting in a circle in a
dish, can we distinguish between VCS and VSC?
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349. To show a relation is an equivalence relation, you need to show it satisfies the
definition of an equivalence relation.

353. To get you started, in Problem 38 the equivalence classes correspond to seating
arrangements.

361. You’ve probably guessed that the sum is n2. To prove this by contradiction,
you have to assume it is false, that is, that there is an n such that 1 + 3 +
5 + · · · + 2n − 1 " n2. Then the method of Problem 360 says there must
be a smallest such n and suggests we call it k. Why do you know that
1 + 3 + 5 + · · · + 2k − 3 = (k − 1)2? What happens if you add 2n − 1 to both
sides of the equation?

365. You’ve probably already seen that, with small values of n, sometimes n2 and
sometimes 2n is bigger. But if you keep experimenting one of the functions
seems to get bigger and stay bigger than the other. The number n = b where
this change occurs is a good choice for a base case. So as not to spoil the
problem for you, we won’t say here what this value of b is. However you
shouldn’t be surprised later in the proof if you need to use the assumption
that n/gtb.
Additional Hint: You may have reached the point of assuming that 2k−1 >
(k − 1)2 and found yourself wondering how to prove that 2k > k2. A natural
thing to try is multiplying both sides of 2k−1 > (k − 1)2 by 2. This ends up
giving you 2k > 2k2 − 4k + 2. Based on previous experience it is natural for
you to expect to see how to turn this new right hand side into k2 but not see
how to do it. Here is the hint. You only need to show that the right hand side
is greater than or equal to k2. For this purpose you need to show that one of
the two k2s in 2k2 somehow balances out the −4k. See if you can figure out
how the fact that you are only considering ks with k > b can help you out.

366. When you suspect an argument is not valid, it may be helpful to explicitly try
several values of n to see if it makes sense for them. Often small values of n
are adequate to find the flaw. If you find one flaw, it invalidates everything
that comes afterwards (unless, of course, you can fix the flaw).

370. You might start out by ignoring the word unique and give a proof of the
simpler theorem that results. Then look at your proof to see how you can
include uniqueness in it.

377. An earlier problem may help you put your answer into a simpler form.

378. What is the power series representation of ex2?

381. There is only one element that you may choose. In the first case you either
choose it or you don’t.

387.b. At some point, you may find the binomial theorem to be useful.
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391. Notice that any permutation is a product of a derangement of the elements
not fixed by the permutation times a permutation whose cycle decomposition
consists of one-cycles.

392. A binomial coefficient is likely to appear in your answer.

397. If f (x) =
∑∞

i=0 ai
xi

i! and g(x) =
∑∞

j=0 b j
x j

j! , what is the coefficient of xn

n! in
f (x)g(x)? don’t be surprised if your answer has a binomial coefficient in it.
In fact, the binomial coefficient should help you finish the problem.

399. Since the sets of a k-set structure are nonempty and disjoint, the k-element
set of sets can be arranged as a k-tuple in k! ways.

403. The alternate definition of a funciton in Section 3.1.2 can be restated to say
that a function from a k-element set K to an n-element set N can be thought of
as an n-tuple of sets, perhaps with some empty, whose union is K. In order to
think of the function as an n-tuple, we number the elements of N as number
1 through number n. Then the ith set in the n-tuple is the set of elements
mapped to the ith element of N in our numbering?

404. Don’t be surprised if you see a hyperbolic sine or hyperbolic cosine in your
answer. If you aren’t familiar with these functions, look them up in a calculus
book.

407. The EGF for
∑n

i=1 (
n
k )k is

∑∞
n=1

∑n
i=1

n!
k!(n−k)! k

xn

n! . You can cancel out the n!
terms and the k terms. Now try to see if what is left can be regarded as the
product of two EGFs.

421.a. To apply the exponential formula, we must take the exponential function
of an EGF whose constant term is zero, or in other words, for a species of
structures that has no structures that use the empty set.

421.b. Once you know the vertex set of a graph, all you have to do to specify the
graph is to specify its set of edges.

421.d. What is the calculus definition of (1 + y)?

421.f. Look for a formula that involves summing over all partitions of the integer n.
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Appendix E

GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://www.fsf.

org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing

it is not allowed.

0. PREAMBLE The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other
work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under copyright
law.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant.

193

http://www.fsf.org/
http://www.fsf.org/


194 E. GNU Free Documentation License

The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straight-
forwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transpar-
ent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
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begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate some
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or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties — for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS You may combine the Document with other documents
released under this License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowl-
edgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Docu-
ment and other documents released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document
or its derivatives with other separate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
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of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally termi-
nates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish
new, revised versions of the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Document.

11. RELICENSING “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works
thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
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action of a group on a set, 115
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arithmetic series, 40
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asymptotic combinatorics, 36
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basis (for polynomials), 61
Bell Number, 59
bĳection, 11, 137
bĳection principle, 11
binomial coefficient, 11

q-binomial, 84
Binomial Theorem, 24
binomial theorem

extended, 80
block of a partition, 6, 141
broken permutation, 57
Burnside’s Lemma, 123

Cartesian product, 5
Catalan Number, 22, 124

recurrence for, 89, 90
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generating function for, 89
Catalan Path, 22

Cauchy-Frobenius-Burnside
Theorem, 123
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chromatic polynomial of a graph, 99
Chung-Feller Theorem, 23
closure property, 105
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multinomial, 60
coloring

standard notation, 117
standard ordering, 117

coloring of a graph, 98
proper, 98

combinations, 11
commutative law, 111
complement, 96
complement of a partition, 66
composition, 28, 137

k parts, 28
number of, 28

composition of functions, 104
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number of, 28
congruence modulo n, 140
conjugate of an integer partition, 65
connected component graph, 165
connected component of a graph, 98,

165
connected structures and EGFs, 163
constant coefficient linear

recurrence, 40
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cost of a spanning tree, 46
cycle (in a graph), 43
cycle (of a permutation), 112

element of, 112
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equivalent, 112
cycle index, 129
cycle monomial, 129
cyclic group, 113

definition
inductive, 33
recursive, 33

degree of a vertex, 42
degree sequence, 50, 72

ordered, 50
deletion, 47
deletion-contraction recurrence, 48,

99
derangement, 95
derangement problem, 95
diagram

of a partition
Ferrers, 64
Young, 64

digraph, 9, 135
dihedral group, 107
Dĳkstra’s algorithm, 48
directed graph, 9, 135
disjoint, 4

multisets, 121
distance in a graph, 48
distance in a weighted graph, 48
domain (of a function), 133
double induction, 35

strong, 35
driving function, 40
Dyck path, 22

edge, 26, 41, 135
in a digraph, 135
of a complete graph, 26

EGF, 152
enumerator

fixed point, 127
orbit, 126

equivalence class, 141
equivalence relation, 140, 142
equivalent cycle, 112
exponential formula, 163

connected structures for, 165
exponential generating function, 152
exponential generating functions

product principle for, 160
exponential generating functions for

connected structures, 163
extended binomial theorem, 80

F-structures, 158
factorial, 8, 33, 55

q-ary, 84
falling, 55

factorial power
falling, 8
rising, 55

falling factorial power, 8, 55
Ferrers diagram, 64
Fibonacci numbers, 86, 88
fix, 121
fixed point enumerator, 127
function, 3, 133

alternate definition, 55
bĳection, 11
characteristic, 14
composition, 137
digraph of, 9
driving, 40
identity, 104
injection, 4
inverse, 105
one-to-one, 4, 134
onto, 10, 134

and Stirling Numbers, 60
ordered, 55

onto, 55
relation of, 133
surjection, 10, 134

functions
composition of, 104
number of, 53
one-to-one

number of, 53
onto

number of, 97

general product principle, 6, 34
generating function, 76

exponential, 152
product principle for, 160

ordinary, 152
product principle for, 79



Index 201

geometric progression, 40
geometric series, 40, 79
graph, 41

chromatic polynomial of, 99
coloring of, 98

proper, 98
complete, 26
connected component of, 98, 165
coordinate, 135
directed, 9, 135
distance in, 48
simple, 165

graphs
isomorphic, 131

Gray Code, 28
greedy method, 46
group acting on a set, 115
group action on colorings, 118
group of permutations, 105

hatcheck problem, 95
homogeneous linear recurrence, 40

identity function, 104, 137
identity property, 105
identity property (for permutations),

105
inclusion and exclusion principle, 93

for unions of sets, 95
indicator polynomials, 151
induction

double, 35
mathematical, the principle of,

31, 147
mathematical, the strong

principle of, 32
strong double, 35

inductive
conclusion, 32
hypothesis, 32
step, 32

inductive definition, 33
injection, 4, 134
inverse function, 105
inverse property, 105
involution, 114
isometry, 108
isomorphic

graphs, 131

k-set structures, 160

Lah number, 57
lattice path, 20

diagonal, 20
length (of a path), 48
linear recurrence, 40, 87

constant coefficient, 40
homogeneous, 40
second order, 86

mathematical induction
double, 35
principle of, 31, 147
strong double, 35

ménage problem, 97
method

probabilistic, 36
minimum cost spanning tree, 46
monochromatic subgraph, 37
multinomial coefficient, 60
multiorbit, 120
multiorbits, 127
multiplicity in a multiset, 56
multiset, 56
multisets

product principle, 122
quotient principle, 122
sum principle, 121
union, 121

one-to-one, 4
one-to-one function, 134
onto function, 10, 134

counting, 60
ordered, 55

onto functions
number of, 97

orbit, 119
orbit enumerator, 126
Orbit-Fixed Point Theorem, 127
ordered degree sequence, 72
ordered function, 55
ordered onto function, 55
ordered pair, 3
ordinary generating function, 152
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pair structure, 159
pair,ordered, 3
partial fractions

method of, 88
partition

blocks of, 6
of a set, 5, 58

Stirling Numbers, 58
partition (of a set), 141
partition of a set

type vector, 59
partition of an integer, 63

conjugate of, 65
decreasing list, 64
Ferrers diagram, 64
into n parts, 63
self conjugate, 65
type vector, 64
Young diagram, 64

partitions of a set
number of, 59

Pascal’s Triangle, 12
path

in graph, 43
lattice, 20

diagonal, 20
length of, 48

permutation
k-element, 8
as a bĳection, 11
broken, 57
cycle of, 112
two row notation, 107

permutation group, 105
picture enumerator, 74
picture enumerators

product principle for, 75
pigeonhole principle, 25

generalized, 26
Pólya-Redfield Theorem, 129
principle

bĳection, 11
product, 5, 6

general, 6
quotient, 143
sum, 5, 6

principle of inclusion and exclusion,
93

for unions of sets, 95
principle of mathematical induction,

31, 147
probabilistic method, 36
product

Cartesian, 5
product notation, 8
product principle, 5, 6

for multisets, 122
general, 6, 34
picture enumerators, 75

product principle for exponential
generating functions, 160

product principle for generating
functions, 79

progression
arithmetic, 39
geometric, 40

proper coloring of a graph, 98

quotient principle, 18, 143
for multisets, 122

range (of a function), 133
recurrence, 38

constant coefficient, 86, 87
deletion-contraction, 48
linear, 40, 86, 87
linear homogeneous, 40
second order, 86, 87
solution to, 38
two variable, 58

recurrence relation, 38
recursive definition, 33
reflexive, 139
relation, 133

equivalence, 140, 142
of a function, 133
recurrence, 38
reflexive, 139, 140
transitive, 140

rising factorial power, 55
rotation group, 105

second order recurrence, 86
self-conjugate partition, 65
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sequence
degree, 50

series
arithmetic, 40
geometric, 40, 79

set
colorings of action of a group

on, 116
sets

disjoint, 4
mutually disjoint, 4

simple graph, 165
space of polynomials, 61
spanning tree, 45

cost of, 46
minimum cost, 46

species, 158
exponential generating function

for, 159
standard notation for a coloring, 117
Stirling Number

first kind, 62
second kind, 58, 97

Stirling’s formula for n!, 19
Stirling’s triangle

first kind, 62
second kind, 58

strong double induction, 35
strong principle of mathematical

induction, 32
structure, 158

pair, 159

using a set, 158
subgroup, 111
sum principle, 5, 6, 93

for multisets, 121
surjection, 10, 134
surjections

number of, 97
symmetric, 140
symmetric group, 106

transitive, 140
tree, 43

spanning, 45
cost of, 46
minimum cost, 46

Twentyfold Way, 52
two row notation, 107
type vector for a partition of an

integer, 64
type vector of a partition of a set, 59

union of multisets, 121
uses

a structure using a set, 158

vertex, 26, 41, 135
degree of, 42
of a complete graph, 26, 135

walk, 43

Young diagram, 64
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